Publications by authors named "Bahman Hafizi"

Efficient helicity transfer from Poincaré fields to electrons of hydrogenic ions is revealed for the first time by four-dimensional relativistic simulations. The magnetic multipole class of Poincaré fields is chosen due to its fundamental role in light-matter spin coupling, and the calculation is demonstrated for Ne^{9+} ion irradiated by single and multimode x-ray pulses. Photoelectrons of both helicities emerge synchronously from the ion ensemble, and their directionality is controllable through the radiation mode numbers.

View Article and Find Full Text PDF

Stimulated Raman scattering is ubiquitous in many high-intensity laser environments. Parametric four-wave mixing between the pump and Raman sidebands can affect the Raman gain, but stringent phase matching requirements and strongly nonlinear dynamics obscure clear understanding of its effects at high laser powers. Here we investigate four-wave mixing in the presence of strong self-focusing and weak ionization at laser powers above the Kerr critical power.

View Article and Find Full Text PDF

Meter-scale nonlinear propagation of a picosecond ultraviolet laser beam in water, sufficiently intense to cause stimulated Raman scattering (SRS), nonlinear focusing, pump-Stokes nonlinear coupling, and photoexcitation, was characterized in experiments and simulations. Pump and SRS Stokes pulse energies were measured, and pump beam profiles were imaged at propagation distances up to 100 cm for a range of laser power below and above self-focusing critical power. Simulations with conduction band excitation energy =9.

View Article and Find Full Text PDF

In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers.

View Article and Find Full Text PDF

We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration.

View Article and Find Full Text PDF

The absorption and scattering of oceanic aerosols are characterized using low- and high-power lasers in the near IR (1.064 microm). The imaginary part of the refractive index of sea salt inferred from low-power absorption measurements is 200x less than the commonly accepted value from the literature.

View Article and Find Full Text PDF