Mitochondrial dysfunction plays an important role in Parkinson's disease (PD), with mitochondrial DNA copy number (mtDNA-CN) emerging as a potential marker for mitochondrial health. We investigated the links between blood mtDNA-CN and PD severity and risk using the Accelerating Medicines Partnership program for Parkinson's Disease dataset, replicating our results in the UK Biobank. Our findings reveal that reduced blood mtDNA-CN levels are associated with heightened PD risk and increased severity of motor symptoms and olfactory dysfunction.
View Article and Find Full Text PDFObjectives: Spinocerebellar ataxia 27B due to GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene has recently been recognized as a common cause of late-onset hereditary cerebellar ataxia. Here we present the first report of this disease in the US population, characterizing its clinical manifestations, disease progression, pathological abnormalities, and response to 4-aminopyridine in a cohort of 102 patients bearing GAA repeat expansions.
Methods: We compiled a series of patients with SCA27B, recruited from 5 academic centers across the United States.
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells.
View Article and Find Full Text PDFPolygenic risk scores (PRSs) are an important tool for understanding the role of common genetic variants in human disease. Standard best practices recommend that PRSs be analyzed in cohorts that are independent of the genome-wide association study (GWAS) used to derive the scores without sample overlap or relatedness between the two cohorts. However, identifying sample overlap and relatedness can be challenging in an era of GWASs performed by large biobanks and international research consortia.
View Article and Find Full Text PDFObjectives: Purine-rich element-binding protein alpha (PURA) regulates gene expression and is ubiquitously expressed with an enrichment in neural tissues. Pathogenic variants in cause the neurodevelopmental disorder PURA syndrome that has a variable phenotype but typically comprises moderate-to-severe global developmental delay, intellectual disability, early-onset hypotonia and hypothermia, epilepsy, feeding difficulties, movement disorders, and subtle facial dysmorphism. Speech is reportedly absent in most, but the specific linguistic phenotype is not well described.
View Article and Find Full Text PDFBackground: Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program.
View Article and Find Full Text PDFObjective: Abnormal changes in metabolite levels in serum or plasma have been highlighted in several studies in age-related macular degeneration (AMD), the leading cause of irreversible vision loss. Specific changes in lipid profiles are associated with an increased risk of AMD. Metabolites could thus be used to investigate AMD disease mechanisms or incorporated into AMD risk prediction models.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
August 2024
In patients of Asian ancestry, a heterozygous CGG repeat expansion of >100 units in is the cause of oculopharyngodistal myopathy type 1 (OPDM1). Repeat lengths of between 61 and 100 units have been associated with rare amyotrophic lateral sclerosis (ALS) cases of Asian ancestry, although with unusually long disease duration and without significant upper motor neuron involvement. This study sought to determine whether CGG repeat expansions were also present in ALS patients of European ancestry.
View Article and Find Full Text PDFObjective: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice.
Methods: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants.
Background: Detection of anaemia is crucial for clinical medicine and public health. Current WHO anaemia definitions are based on statistical thresholds (fifth centiles) set more than 50 years ago. We sought to establish evidence for the statistical haemoglobin thresholds for anaemia that can be applied globally and inform WHO and clinical guidelines.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in and determine that variant type is correlated with disease severity.
View Article and Find Full Text PDFBackground: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability.
Methods: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor.
About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations.
View Article and Find Full Text PDFPurpose: To our knowledge, there are no data examining the agreement between self-reported and clinician-rated stuttering severity. In the era of big data, self-reported ratings have great potential utility for large-scale data collection, where cost and time preclude in-depth assessment by a clinician. Equally, there is increasing emphasis on the need to recognize an individual's experience of their own condition.
View Article and Find Full Text PDFStuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering.
View Article and Find Full Text PDFHereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing.
View Article and Find Full Text PDFObjective: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE.
View Article and Find Full Text PDFBackground: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood.
Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy.