Publications by authors named "Bahlibi Weldegebriall Sahlu"

Spermatogenesis is an extremely sophisticated and complex process and is regulated not only by a large number of genes, but also by a large number of epigenetic factors. Although existing studies have demonstrated that circRNAs plays an important regulatory role in spermatogenesis, there is still insufficient information to properly understand the regulatory role and mechanism of circRNA action. We addressed this issue by examining the testes of two Holstein bull developmental stages; three 8-week-olds (young bull, YB) and three 80-week-olds (adult bull, AB), randomly selected from the same breeding stock.

View Article and Find Full Text PDF

Under the large-scale breeding model, the performance of the Holstein bull is directly related to the economic efficiency of the whole dairy farm and is the key factor affecting the genetic quality of the herd. Although the number of reported studies on the association of long noncoding RNAs (lncRNAs) with male reproduction is increasing, there is a lack of research on how lncRNAs regulate Holstein bull testicular development and spermatogenesis. To explore the molecular mechanisms between lncRNAs and spermatogenesis, three 8-week-old Holstein bull (young bull, YB) testes and three 80-week-old Holstein bull (adult bull, AB) testes from the same herd were randomly chosen, and transcriptome analysis was performed to find associations between spermatogenesis and transcriptome profiles.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis.

View Article and Find Full Text PDF

Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored.

View Article and Find Full Text PDF

Anti-Mullerian hormone (AMH) is an important reproductive marker of ovarian reserve produced by granulosa cells (GCs) of pre-antral and early-antral ovarian follicles in several species, including cattle. This hormone plays a vital role during the recruitment of primordial follicles and follicle stimulating hormone (FSH)-dependent follicular growth. However, the regulatory mechanism of AMH expression in follicles is still unclear.

View Article and Find Full Text PDF

Anti-Müllerian hormone (AMH) is a reliable and easily detectable reproductive marker for the fertility competence of many farm animal species. AMH is also a good predictor of superovulation in cattle, sheep, and mares. In this review, we have summarized the recent findings related to AMH and its predictive reliability related to fertility and superovulation in domestic animals, especially in cattle.

View Article and Find Full Text PDF