Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications.
Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally.
Objective: Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver.
View Article and Find Full Text PDFTo investigate the role of enhanced antigen presentation in dendritic cell (DC)-based immunotherapy. Here, we describe the development of a cell-penetrating mucin 1 (MUC1) antigen and its immunotherapeutic potential against tumors. After animal groups received two immunizations of MUC1-MPA(11)P-pulsed DCs, we observed a marked tumor regression compared with the mice treated with DCs alone or DCs pulsed with MUC1 peptide.
View Article and Find Full Text PDFWe report the development of superparamagnetic iron oxide (SPIOs) nanoparticles and investigate the migration of SPIO-labeled dendritic cells (DCs) in a syngeneic mouse model using magnetic resonance (MR) imaging. The size of the dextran-coated SPIO is roughly 30 nm, and the DCs are capable of independent uptake of these particles, although not at levels comparable to particle uptake in the presence of a transfecting reagent. On average, with the assistance of polylysine, the particles were efficiently delivered inside DCs within one hour of incubation.
View Article and Find Full Text PDFPrevious preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice.
View Article and Find Full Text PDFObjective: Stereotactic radiotherapy (ablative radiation) is a modality that holds considerable promise for effective treatment of intracranial and extracranial malignancies. Although tumor vasculature is relatively resistant to small fractionated doses of ionizing radiation, large ablative doses of ionizing radiation lead to effective demise of the tumor vasculature. The purpose of this study was (1) to noninvasively monitor and compare tumor physiologic parameters in response to ablative radiation treatments and (2) to use these noninvasive parameters to optimize the schedule of administration of radiation therapy.
View Article and Find Full Text PDF