Methods Mol Biol
November 2023
Posttranscriptional RNA modification has become a revolutionary clinical tool to improve the underlying condition in genetic disorders. The cell achieves translational regulation through sequence and/or structural elements that recruit specific positive- or negative-acting factors to mRNAs. Targeting mRNA expression offers a less invasive therapeutic approach than other well-known gene therapy approaches.
View Article and Find Full Text PDFHerein, we present a novel method to specifically increase a messenger RNA's (mRNA) expression at the post-transcriptional level. This is accomplished using what we term a "Tethered mRNA Amplifier." The Tethered mRNA Amplifier specifically binds an mRNA's 3' untranslated region and enhances its stability/translation, often doubling protein output.
View Article and Find Full Text PDFAcross the fields of virology and neuroscience, the role of neurotropic viruses in Alzheimer's disease (AD) has received renewed enthusiasm, with a particular focus on human herpesviruses (HHVs). Recent genomic analyses of brain tissue collections and investigations of the antimicrobial responses of amyloid-β do not exclude a role of HHVs in contributing to or accelerating AD pathogenesis. Due to continued expansion in our aging cohort and the lack of effective treatments for AD, this composition examines a potential neuroviral theory of AD in light of these recent data.
View Article and Find Full Text PDFThe dysregulation of lipid homeostasis is emerging as a hallmark of many CNS diseases. As aberrant protein regulation is suggested to be a shared pathological feature amongst many neurodegenerative conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in neuronal lipid processing may contribute to disease progression in the CNS. Specifically, given the endoplasmic reticulum (ER) dual role in lipid homeostasis as well as protein quality control (PQC) via unfolded protein response (UPR), lipid dysregulation in the CNS may converge on ER functioning and constitute a crucial mechanism underlying aberrant protein aggregation.
View Article and Find Full Text PDFHIV-1 Tat is a potent neurotoxic protein that is released by HIV-1 infected cells in the brain and perturbs neuronal homeostasis, causing a broad range of neurological disorders in people living with HIV-1. Furthermore, the effects of Tat have been addressed in numerous studies to investigate the molecular events associated with neuronal cells survival and death. Here, we discovered that exposure of rat primary neurons to Tat resulted in the up-regulation of an uncharacterized long non-coding RNA (lncRNA), LOC102549805 (lncRNA-U1).
View Article and Find Full Text PDFConverging evidence indicates the dysregulation of unique cytosolic compartments called stress granules (SGs) might facilitate the accumulation of toxic protein aggregates that underlie many age-related neurodegenerative pathologies (ANPs). SG dynamics are particularly susceptible to the cellular conditions that are commonly induced by aging, including the elevation in reactive oxygen species and increased concentration of aggregate-prone proteins. In turn, the persistent formation of these compartments is hypothesized to serve as a seed for subsequent protein aggregation.
View Article and Find Full Text PDFHuman Immunodeficiency Virus-1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infecting nearly 37 million people worldwide. Currently, there is no definitive cure, mainly due to HIV-1's ability to enact latency. Our previous work has shown that exosomes, a small extracellular vesicle, from uninfected cells can activate HIV-1 in latent cells, leading to increased mostly short and some long HIV-1 RNA transcripts.
View Article and Find Full Text PDFHIV-1 Tat is known to be released by HIV infected non-neuronal cells in the brain, and after entering neurons, compromises brain homeostasis by impairing pro-survival pathways, thus contributing to the development of HIV-associated CNS disorders commonly observed in individuals living with HIV. Here, we demonstrate that synapsins, phosphoproteins that are predominantly expressed in neuronal cells and play a vital role in modulating neurotransmitter release at the pre-synaptic terminal, and neuronal differentiation become targets for Tat through autophagy and protein quality control pathways. We demonstrate that the presence of Tat in neurons results in downregulation of BAG3, a co-chaperone for heat shock proteins (Hsp70/Hsc70) that is implicated in protein quality control (PQC) processes by eliminating mis-folded and damaged proteins, and selective macroautophagy.
View Article and Find Full Text PDFHIV-1 Tat protein is released from HIV-1-infected cells and can enter non-permissive cells including neurons. Tat disrupts neuronal homeostasis and may contribute to the neuropathogenesis in people living with HIV (PLWH). The use of cocaine by PLWH exacerbates neuronal dysfunction.
View Article and Find Full Text PDFBackground And Aims: Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction.
Methods: Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution.
Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data.
View Article and Find Full Text PDFBackground: Olive trees (Olea europaea subsp. europaea var. europaea) naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East.
View Article and Find Full Text PDF