Endothelial cell (EC) activation and their subsequent binding with different cells have various mechanical consequences that, if monitored real time, can serve as a functional biomarker of many pathophysiological response mechanisms. This work presents an innovative and facile strategy to conduct such monitoring using quartz crystal microbalance (QCM), thereby relating the shifts in its frequency and motional resistance to morphological changes upon cell-cell and cell-substrate interactions. By activating ECs with TNF-α and then characterizing their binding with HL-60 and KG-1 leukemia cells, we are able to induce the mechanical changes in ECs especially in the region of cell-substrate contact which resulted in dynamically coupled mass and viscoelastic changes representing the extent of both activation and binding.
View Article and Find Full Text PDFIn acute myeloid leukemia (AML), the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs) in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia.
View Article and Find Full Text PDF