Publications by authors named "Bahareh Morovati"

x-ray photon-counting detectors have recently gained popularity due to their capabilities in energy discrimination power, noise suppression, and resolution refinement. The latest extremity photon-counting computed tomography (PCCT) scanner leverages these advantages for tissue characterization, material decomposition, beam hardening correction, and metal artifact reduction. However, technical challenges such as charge splitting and pulse pileup can distort the energy spectrum and compromise image quality.

View Article and Find Full Text PDF

Cardiac computed tomography (CT) has emerged as a major imaging modality for the diagnosis and monitoring of cardiovascular diseases. High temporal resolution is essential to ensure diagnostic accuracy. Limited-angle data acquisition can reduce scan time and improve temporal resolution, but typically leads to severe image degradation and motivates for improved reconstruction techniques.

View Article and Find Full Text PDF

Low-dose computed tomography (LDCT) offers reduced X-ray radiation exposure but at the cost of compromised image quality, characterized by increased noise and artifacts. Recently, transformer models emerged as a promising avenue to enhance LDCT image quality. However, the success of such models relies on a large amount of paired noisy and clean images, which are often scarce in clinical settings.

View Article and Find Full Text PDF

Breast cancer is the second most common cancer among women worldwide, and the diagnosis by pathologists is a time-consuming procedure and subjective. Computer-aided diagnosis frameworks are utilized to relieve pathologist workload by classifying the data automatically, in which deep convolutional neural networks (CNNs) are effective solutions. The features extracted from the activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF).

View Article and Find Full Text PDF