Annu Int Conf IEEE Eng Med Biol Soc
July 2023
Prosthetic users need reliable control over their assistive devices to regain autonomy and independence, particularly for locomotion tasks. Despite the potential for myoelectric signals to reflect the users' intentions more accurately than external sensors, current motorized prosthetic legs fail to utilize these signals, thus hindering natural control. A reason for this challenge could be the insufficient accuracy of locomotion detection when using muscle signals in activities outside the laboratory, which may be due to factors such as suboptimal signal recording conditions or inaccurate control algorithms.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
August 2023
Most amputations occur in lower limbs and despite improvements in prosthetic technology, no commercially available prosthetic leg uses electromyography (EMG) information as an input for control. Efforts to integrate EMG signals as part of the control strategy have increased in the last decade. In this systematic review, we summarize the research in the field of lower limb prosthetic control using EMG.
View Article and Find Full Text PDFRobotic prostheses controlled by myoelectric signals can restore limited but important hand function in individuals with upper limb amputation. The lack of individual finger control highlights the yet insurmountable gap to fully replacing a biological hand. Implanted electrodes around severed nerves have been used to elicit sensations perceived as arising from the missing limb, but using such extra-neural electrodes to record motor signals that allow for the decoding of phantom movements has remained elusive.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
In research on lower limb prostheses, safety during testing and training is paramount. Lower limb prosthesis users risk unintentional loss of balance that can result in injury, fear of falling, and overall decreased confidence in their prosthetic leg. Here, we present a protocol for managing the risks during evaluation of active prosthetic legs with modifiable control systems.
View Article and Find Full Text PDFNowadays, the brain-computer interface (BCI) systems attract much more attention than before, yet they have not found their ways into our lives since their accuracy is not satisfying. Error Related Potential (ErRP) is a potential that occurs in human brain signals when an unintended event happens, against ones' will and thoughts. An example is the occurrence of an error in BCI systems.
View Article and Find Full Text PDF