Emotion is one of the most complex and difficult expression to be predicted. Nowadays, many recognition systems that use classification methods have focused on different types of emotion recognition problems. In this paper, we aimed to propose a multimodal fusion method between electroencephalography (EEG) and electrooculography (EOG) signals for emotion recognition.
View Article and Find Full Text PDFNowadays, motor imagery-based brain-computer interfaces (BCIs) have been developed rapidly. In these systems, electroencephalogram (EEG) signals are recorded when a subject is involved in the imagination of doing any motor imagery movement like the imagination of the right/left hands, etc. In this paper, we sought to validate and enhance our previously proposed angle-amplitude transformation (AAT) technique, which is a simple signal-to-image transformation approach for the classification of EEG and MEG signals.
View Article and Find Full Text PDF