Publications by authors named "Bahar Aslanbay Guler"

Article Synopsis
  • The global demand for healthier lifestyles and eco-friendly choices is rising, with consumers seeking natural products that promote well-being.
  • The marine environment is explored as a valuable resource for the cosmetics industry, offering bioactive compounds that can be used safely and effectively in various personal care products.
  • The manuscript discusses sourcing methods, safety issues, and includes case studies on innovative cosmetic applications developed from marine organisms in Iceland and Italy.
View Article and Find Full Text PDF

Chemobrionic systems have attracted great attention in material science for development of novel biomimetic materials. This study aims to design a new bioactive material by integrating biosilica into chemobrionic structure, which will be called biochemobrionic, and to comparatively investigate the use of both chemobrionic and biochemobrionic materials as bone scaffolds. Biosilica, isolated from Amphora sp.

View Article and Find Full Text PDF

Microalgae are considered a promising source for obtaining natural compounds with strong antioxidant activity. Despite the great progress made in this field, there is still need for further studies applying simple and cost-effective modifications to reveal their full potential and enhance antioxidant properties. Arthrospira platensis and Chlorella vulgaris are some of the most common cells studied for this purpose.

View Article and Find Full Text PDF

Chemical gardens are an exciting area of self-organized precipitation structures that form nano- and micro-sized structures in different shapes. This field has attracted great interest from researchers due to the specific characteristics and potential applications of these structures. Today, research on chemical gardens has provided deeper information regarding the formation mechanisms of these structures, and several techniques have been developed for chemical garden growth.

View Article and Find Full Text PDF

3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles.

View Article and Find Full Text PDF

Astaxanthin is one of the most attractive carotenoid in the cosmetic, food, pharmaceutical, and aquaculture industries due to its strong bioactive properties. Among the various sources, several algae species are considered as rich sources of astaxanthin. Downstream processing of algae involves the majority of the total processing costs.

View Article and Find Full Text PDF

Chemobrionics is a research field about the well-known self-organized inorganic structures. Numerous research works have focused on controlling their growth pattern and characteristic features. In the present study, a controlled injection method is proposed to produce more regular self-assembled chemobrionics compared to the standard direct injection technique.

View Article and Find Full Text PDF

The unicellular green microalga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin. Aiming to cultivate these microalgae with high astaxanthin efficiency, cultivations were scaled-up from 1000 mL bottle to 2 L and 8 L airlift photobioreactor using volumetric power consumption rate (W/m) as scale up strategy. After cultivations, computational fluid dynamics (CFD) simulation was used to investigate the flow patterns, mixing efficiency and gas holdup profile within the 2 L photobioreactor.

View Article and Find Full Text PDF