The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A PI3Kα-selective inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a PI3Kα-selective inhibitor by applying structure-based drug design (SBDD) and computational analysis.
View Article and Find Full Text PDFPhosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease.
View Article and Find Full Text PDF1. Leukotriene B4 (LTB4) is a proinflammatory mediator important in the progression of a number of inflammatory diseases. Preclinical models can explore the role of LTB4 in pathophysiology using tool compounds, such as CP-105696, that modulate its activity.
View Article and Find Full Text PDFPIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs) in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids.
View Article and Find Full Text PDFPI3K, AKT and mTOR, key kinases from a frequently dysregulated PI3K signaling pathway, have been extensively pursued to treat a variety of cancers in oncology. Clinical trials of PF-04691502, a highly potent and selective ATP competitive kinase inhibitor of class 1 PI3Ks and mTOR, from 4-methylpyridopyrimidinone series, led to the discovery of a metabolite with a terminal carboxylic acid, PF-06465603. This paper discusses structure-based drug design, SAR and antitumor activity of the MPP derivatives with a terminal alcohol, a carboxylic acid or a carboxyl amide.
View Article and Find Full Text PDFPigment Cell Melanoma Res
November 2012
Cancer drugs that target pivotal signaling molecules required for malignant cell survival and growth have demonstrated striking antitumor activities in appropriately selected patient populations. Unfortunately, however, therapeutic responses are often of limited duration, typically 6-12 months, because of emergence of drug-resistant subclones of tumor cells. In this review, we highlight several of the mechanisms of emergent resistance to several kinase-targeted small molecule therapies used in melanoma, non-small cell lung cancer (NSCLC) and other solid tumors as illustrative examples.
View Article and Find Full Text PDFClinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models.
View Article and Find Full Text PDFLead optimization efforts that employed structure base drug design and physicochemical property based optimization leading to the discovery of a novel series of 4-methylpyrido pyrimidinone (MPP) are discussed. Synthesis and profile of 1, a PI3Kα/mTOR dual inhibitor, is highlighted.
View Article and Find Full Text PDFTargeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi).
View Article and Find Full Text PDFDeregulation of the phosphoinositide 3-kinase (PI3K) signaling pathway such as by PTEN loss or PIK3CA mutation occurs frequently in human cancer and contributes to resistance to antitumor therapies. Inhibition of key signaling proteins in the pathway therefore represents a valuable targeting strategy for diverse cancers. PF-04691502 is an ATP-competitive PI3K/mTOR dual inhibitor, which potently inhibited recombinant class I PI3K and mTOR in biochemical assays and suppressed transformation of avian fibroblasts mediated by wild-type PI3K γ, δ, or mutant PI3Kα.
View Article and Find Full Text PDFIntra-molecular hydrogen bonding was introduced to the quinazoline motif to form a pseudo ring (intra-molecular H-bond scaffold, iMHBS) to mimic our previous published core structures, pyrido[2.3-D]pyrimidin-7-one and pteridinone, as PI3K/mTOR dual inhibitors. This design results in potent PI3K/mTOR dual inhibitors and the purposed intra-molecular hydrogen bonding structure is well supported by co-crystal structure in PI3Kγ enzyme.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2010
Pteridinones were designed based on a non-selective kinase template. Because of the uniqueness of the PI3K and mTOR binding pockets, a methyl group was introduced to C-4 position of the peteridinone core to give compounds with excellent selectivity for PI3K and mTOR. This series of compounds were further optimized to improve their potency against PI3Kα and mTOR.
View Article and Find Full Text PDFMembers of the Cool protein family contain SH3, Dbl, and pleckstrin homology domains and are binding partners for the p21-activated kinase (PAK). Using the yeast two-hybrid screen, we identified Cbl-b as a Cool family binding partner. We co-immunoprecipitated endogenous Cool and Cbl-b from a variety of breast cancer cell lines.
View Article and Find Full Text PDFSrc family kinases (SFKs) play many roles in the development and growth of flies and mice. In the July, 2002 issue of Developmental Cell, Bei et al. show that a C.
View Article and Find Full Text PDFMembers of the Pak family of serine/threonine kinases serve as targets for the small GTP-binding proteins Cdc42 and Rac and have been implicated in a wide range of biological activities. Recently, some exciting developments help elaborate the regulation of Pak activity and identify downstream signalling targets. These include the discovery of the Cool/Pix and Cat proteins, which modulate Pak signalling, and downstream kinases that modulate the organization of the actin cytoskeleton or gene expression.
View Article and Find Full Text PDFThe p21-activated kinases (Pak) are major targets of the small GTPases Cdc42 and Rac. We, and others, recently identified a family of proteins termed Cool/Pix, which interact with Pak3. In cells, p50(Cool-1) suppresses Pak activation by upstream activators; p85(Cool-1) has a permissive effect on Pak activation, and we now show that the closely related Cool-2 stimulates Pak kinase activity.
View Article and Find Full Text PDFPaxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C.
View Article and Find Full Text PDFSalmonella typhimurium has sustained a long-standing association with its host and therefore has evolved sophisticated strategies to multiply and survive within this environment. Central to Salmonella pathogenesis is the function of a dedicated type III secretion system that delivers bacterial effector proteins into the host cell cytoplasm. These effectors stimulate nuclear responses and actin cytoskeleton reorganization leading to the production of proinflammatory cytokines and bacterial internalization.
View Article and Find Full Text PDFThe possibility that the Dbl family member Lfc can activate Rac1 in cells is investigated in this study. Previously, we demonstrated that both Lfc and Lsc, like their closest relative Lbc, can act catalytically in stimulating the guanine nucleotide exchange activity of RhoA in vitro. Neither Lfc nor Lsc stimulated the in vitro exchange activity of Cdc42 or Rac1; however, Lfc was capable of forming a tight complex with Rac1 in vitro.
View Article and Find Full Text PDFThe pathway involving the signalling protein p21Ras propagates a range of extracellular signals from receptors on the cell membrane to the cytoplasm and nucleus. The Ras proteins regulate many effectors, including members of the Raf family of protein kinases. Ras-dependent activation of Raf-1 at the plasma membrane involves phosphorylation events, protein-protein interactions and structural changes.
View Article and Find Full Text PDFNonsyndromic X-linked mental retardation (MRX) syndromes are clinically homogeneous but genetically heterogeneous disorders, whose genetic bases are largely unknown. Affected individuals in a multiplex pedigree with MRX (MRX30), previously mapped to Xq22, show a point mutation in the PAK3 (p21-activated kinase) gene, which encodes a serine-threonine kinase. PAK proteins are crucial effectors linking Rho GTPases to cytoskeletal reorganization and to nuclear signalling.
View Article and Find Full Text PDFProteins of the p21-activated kinase (Pak) family have been implicated in the regulation of gene expression, cytoskeletal architecture, and apoptosis. Although the ability of Cdc42 and Rac GTPases to activate Pak is well established, relatively little else is known about Pak regulation or the identity of Pak cellular targets. Here we report the identification of two closely related Pak3-binding proteins, possibly arising from alternative splicing, designated p50 and p85(Cool-1) (cloned out of library).
View Article and Find Full Text PDFReorganization of the actin cytoskeleton is an early cellular response to a variety of extracellular signals. Dissection of pathways leading to actin rearrangement has focused largely on those initiated by growth factor receptors or integrins, although stimulation of G protein-coupled receptors also leads to cytoskeletal changes. In transfected Cos-7SH cells, activation of the chemoattractant formyl peptide receptor induces cortical actin polymerization and a decrease in the number of central actin bundles.
View Article and Find Full Text PDF