The spread of the African swine fever virus (ASF virus) genotype ii in the Eurasian region has been very successful and often inexplicable. The virus spreads rapidly and persists in areas with wild boar populations, but areas without feral pig populations are also affected. The virus has shown the ability to survive for a long time in the environment without a population of susceptible hosts, both pigs and Ornithodoros soft ticks.
View Article and Find Full Text PDFBackground And Aim: With the emergence of severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), antiviral drug development has gained increased significance due to the high incidence and potentially severe complications of the resulting coronavirus infection. Heterocycle compounds, acting as antimetabolites of DNA and RNA monomers, rank among the most effective antiviral drugs. These compounds' antiviral effects on various SARS-CoV-2 isolates, as found in existing data collections, form the basis for further research.
View Article and Find Full Text PDFShortly after the establishment of African swine fever virus (ASFV) genotype II in 2007, cases of acute fatal infection were observed. However, after several years of circulation in the Eurasian region, the clinical signs of the disease changed. Currently, this disease can occur acutely, subclinically, chronically, or asymptomatically.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) can accumulate and survive in leeches for a long time. The reasons for the survival of ASFV in leeches are not entirely clear. Here, we elucidate the virus survival pathway in infected leeches.
View Article and Find Full Text PDFAt the end of 2019, an outbreak of a new severe acute respiratory syndrome caused by a coronavirus occurred in Wuhan, China, after which the virus spread around the world. Here, we have described the adaptive capacity and pathogenesis of the SARS-CoV-2 Delta variant, which is widespread in Armenia, in vitro and vivo on Syrian hamsters. We have studied the changes in the SARS-CoV-2genome using viral RNA sequencing during virus adaptation in vitro and in vivo.
View Article and Find Full Text PDFThe development of new laser-driven electron linear accelerators, providing unique ultrashort pulsed electron beams (UPEBs) with low repetition rates, opens new opportunities for radiotherapy and new fronts for radiobiological research in general. Considering the growing interest in the application of UPEBs in radiation biology and medicine, the aim of this study was to reveal the changes in immune system in response to low-energy laser-driven UPEB whole-body irradiation in rodents. Forty male albino rats were exposed to laser-driven UPEB irradiation, after which different immunological parameters were studied on the 1st, 3rd, 7th, 14th, and 28th day after irradiation.
View Article and Find Full Text PDF