Transparent electrochemical energy storage devices have attracted extensive attention for the power supply of next-generation transparent electronics. In this paper, semitransparent thin film batteries (TFBs) with a grid-structured design have been fabricated on glass substrates using specific photolithography and etching processes to achieve LiCoO/LiPON/Si structures below human eye resolution. UV-vis transmittances up to 60% have been measured for the obtained TFBs.
View Article and Find Full Text PDFThe atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+HO), and DMAI (+O), respectively.
View Article and Find Full Text PDFThis work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li7Ti5O12 at the nanoscale, during the first cycle. Lithium titanate's discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12.
View Article and Find Full Text PDFWe demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2015
In this work we prepared Li1.2Ni0.2Mn0.
View Article and Find Full Text PDFSilicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on BaAl Si as the anode material for lithium-ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X-ray diffraction shows no discernible structural or volume changes even after electrochemical insertion of 44 Li (≈1 Li/Si) into the clathrate structure.
View Article and Find Full Text PDFUsing neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode-electrolyte interface for the high-voltage cathode LiMn(1.5)Ni(0.5)O4 in situ at open circuit voltage and fully delithiated.
View Article and Find Full Text PDFWe have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li2/12Ni3/12Mn7/12]O2 prepared using three different synthesis routes: sol-gel, hydroxide coprecipitation, and carbonate coprecipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading.
View Article and Find Full Text PDFThe structure, chemistry, and spatial distribution of Mn-bearing nanoparticles dissolved from the Li1.05Mn2O4 cathode during accelerated electrochemical cycling tests at 55 °C and deposited within the solid electrolyte interphase (SEI) are directly characterized through HRTEM imaging and XPS. Here we use air protection and vacuum transfer systems to transport cycled electrodes for imaging and analytical characterization.
View Article and Find Full Text PDFThe electrochemical reaction of FeSb2 with Na is reported for the first time. The first discharge (sodiation) potential profile of FeSb2 is characterized by a gentle slope centered at 0.25 V.
View Article and Find Full Text PDFWe report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface.
View Article and Find Full Text PDFSince the discovery of the structure of DNA in 1953 by Watson and Crick, our understanding of the genetic causes and the regulations involved in tumor development have hugely increased. The important amount of research developed since then has led to the development of gene therapy, which specifically targets and treats cancer cells by interacting with, and correcting their genetic material. This study is a review of the most accomplished research using gene therapy aimed at treating malignant ophthalmologic diseases, and focuses more specifically on uveal melanoma and retinoblastoma.
View Article and Find Full Text PDFA detailed surface investigation of the lithium-excess nickel manganese layered oxide Li1.2Ni0.2Mn0.
View Article and Find Full Text PDFGeometrically well-defined Cu6Sn5 thin films were used as a model system to estimate the diffusion depth and diffusion pathway requirements of Na ions in alloy anodes. Cu6Sn5 anodes have an initial reversible capacity towards Li of 545 mA h g(-1) (Li3.96Sn or 19.
View Article and Find Full Text PDFThe lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li(4+x)Ti(5)O(12)/LiPON/Li(x)V(2)O(5) cell and examine in situ the chemistry of Li-O(2) reaction products on Li(x)V(2)O(5) as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into Li(x)V(2)O(5) while molecular oxygen was reduced to form lithium peroxide on Li(x)V(2)O(5) in the presence of oxygen upon discharge.
View Article and Find Full Text PDFLRP130 is a ubiquitous protein involved in cellular homeostasis, microtubule alteration, and transactivation of a few multidrug resistance genes. Its role in resistance to apoptosis in HepG2 and HUH7 hepatocarcinoma cells was investigated. Using shRNA-producing lentiviruses to down-regulate the LRP130 gene, we showed that i) LRP130 did not affect the capacity of hepatocarcinoma cells to extrude drugs since LRP130 down-regulation was insufficient to significantly reduce P-glycoprotein production in these cells, and ii) the expression of 11 apoptosis-related genes measured by PCR-array was significantly reduced.
View Article and Find Full Text PDFWe have investigated the involvement of P-glycoprotein (P-gp)/caveolin-1 interaction in the regulation of brain endothelial cells (EC) migration and tubulogenesis. P-gp overexpression in MDCK-MDR cells was correlated with enhanced cell migration whereas treatment with P-gp inhibitors CsA or PSC833 reduced it. Transfection of RBE4 rat brain endothelial cells with mutated versions of MDR1, in the caveolin-1 interaction motif, decreased the interaction between P-gp and caveolin-1, enhanced P-gp transport activity and cell migration.
View Article and Find Full Text PDFp-glycoprotein (p-gp) is an ATP-binding cassette transporter and its overexpression is responsible for the acquisition of the multidrug resistance phenotype in human tumors. p-gp is localized at the blood-brain barrier and is involved in brain cytoprotection. Our previous work used immunoprecipitation to show that caveolin-1 can interact with p-gp.
View Article and Find Full Text PDFBackground: Most uveal melanomas are currently treated by eye-preserving radiotherapies. However, for melanomas of the largest size or with initial complications, enucleation remains the reference treatment. Enucleation is called primary when it is proposed as the only local treatment option for a melanoma.
View Article and Find Full Text PDFThe multidrug resistance (MDR) phenotype of cancers has generated a large amount of research, owing to its constant fatal clinical outcome. Many studies have focused on the discovery of chemomodulators; however, in spite of this huge effort, the side effects that these products induce, and their additive toxicity when used in the presence of anticancer drugs, have led to the disaffection of the pharmaceutical industry and possibly slowed down research in pharmacological modulation. New tools developed using molecular biology techniques have opened the way for gene therapy and given birth to new therapeutic hopes.
View Article and Find Full Text PDFIn spite of important progress in the local treatment of uveal melanoma, the most frequent primitive intraocular tumor, 15%-30% of patients still die because of tumor metastasis. This tumor is characterized by constitutive chemoresistance, thwarting any attempt to control it using the usual chemotherapy protocols. The chemoresistance of uveal melanoma is mainly due to the typical multidrug resistance phenotype (MDR), which is linked to overexpression of membrane proteins that actively extrude anticancer drugs from the cell.
View Article and Find Full Text PDFUveal melanoma is the most common intraocular malignancy. To study its biology, stable cell lines provide a useful tool, but these are very difficult to obtain. A stable and rapidly growing human choroidal melanoma cell line composed of pure epithelioid cells was established and maintained for at least 4 years.
View Article and Find Full Text PDFUveal melanoma is the most frequent intra-ocular cancer. The recent development of new chromosome-related technologies have permitted the elucidation of both the cytogenetics and the natural history of this disease. Fifty to 60% of uveal melanomas are linked to a monosomy 3, which appears as an early and determinant event in tumor progression.
View Article and Find Full Text PDFP-glycoprotein (P-gp) is the most well-known ATP-binding cassette (ABC) transporter involved in unidirectional substrate translocation across the membrane lipid bilayer, thereby causing the typical multidrug resistance (MDR) phenotype expressed in many cancers. We observed that in human CEM acute lymphoblastic leukemia cells expressing various degrees of chemoresistance and where P-gp was the sole MDR-related ABC transporter detected, the amount of esterified cholesterol increased linearly with the level of resistance to vinblastine while the amounts of total and free cholesterol increased in a nonlinear way. Membrane cholesterol controlled the ATPase activity of P-gp in a linear manner, whereas the P-gp-induced daunomycin efflux decreased nonlinearly with the depletion of membrane cholesterol.
View Article and Find Full Text PDF