Publications by authors named "Baere L"

People with rare lysosomal storage diseases face challenges in their care that arise from disease complexity and heterogeneity, compounded by many healthcare professionals being unfamiliar with these diseases. These challenges can result in long diagnostic journeys and inadequate care. Over 30 years ago, the Rare Disease Registries for Gaucher, Fabry, Mucopolysaccharidosis type I and Pompe diseases were established to address knowledge gaps in disease natural history, clinical manifestations of disease and treatment outcomes.

View Article and Find Full Text PDF

The international liver glycogen storage disease (GSD) priority setting partnership (IGSDPSP) was established to identify the top research priorities in this area. The multiphase methodology followed the principles of the James Lind Alliance (JLA) guidebook. An international scoping survey in seven languages was distributed to patients, carers, and healthcare professionals to gather uncertainties, which were consolidated into summary questions.

View Article and Find Full Text PDF

Anaerobic digestion of residual municipal solid waste (MSW) has become more important than the digestion of source separated biowaste. More than 52% of the capacity available in Europe was designed for digestion of residual municipal waste by the end of 2006, while this was only 13% in 1998. Partial digestion of residual waste organics, by which only a part of the organics is digested, has been implemented to reduce the need for dewatering and subsequent wastewater treatment.

View Article and Find Full Text PDF

Anaerobic digestion has captured a significant share of the European market for the biological treatment of the organic fraction in municipal solid waste. Almost 4 million ton per year in digestion capacity has been installed through the construction of more than 120 full-scale plants. Not all plants have been equally successful, due to poor planning, design or bad operation.

View Article and Find Full Text PDF

Anaerobic digestion capacity has been installed on a large scale for the treatment of biowaste coming from municipal solid waste in the 90's. However, in recent years, a new trend has developed in which anaerobic digestion is applied more and more for the treatment of mixed or grey waste. It is expected that the installed capacity for grey/mixed waste will surpass the capacity installed for biowaste digestion.

View Article and Find Full Text PDF

Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solids, lower methane emissions to the environment, and higher green energy profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation.

View Article and Find Full Text PDF

The most common types of anaerobic digesters for solid wastes have been compared based on biological and technical performance and reliability. Batch systems have the most simple designs and are the least expensive solid waste digesters. They have high potential for application in developing countries.

View Article and Find Full Text PDF

In order to make a correct assessment of the state-of-the-art of the technology, a study was made on the development of digestion capacity for solid waste in Europe. The study was limited to plants in operation or under construction that were treating at least 10% organic solid waste coming from market waste or municipal solid waste. A total treatment capacity for solid waste organics, excluding the tonnage used for sewage sludge and manures, evolved from 122,000 ton per year in 1990 to 1,037,000 ton available or under construction by the year 2000 in 53 plants across Europe, an increase by 750%.

View Article and Find Full Text PDF