Background: The inhalation of combustion-derived nanoparticles (CDNPs) is believed to cause an oxidative stress response, which in turn may lead to pulmonary or even systemic inflammation.
Objective And Methods: In this study we assessed whether the in vivo inflammatory response--which is generally referred to as particle toxicity-of mice to CDNPs can be predicted in vitro by a cell-free ascorbate test for the surface reactivity or, more precisely, oxidative potency (OxPot) of particles.
Results: For six types of CDNPs with widely varying particle diameter (10-50 nm), organic content (OC; 1-20%), and specific Brunauer, Emmett, and Teller (BET) surface area (43-800 m2/g), OxPot correlated strongly with the in vivo inflammatory response (pulmonary polymorphonuclear neutrophil influx 24 hr after intratracheal particle instillation).
Increased levels of particulate air pollution are associated with increased respiratory and cardiovascular mortality and morbidity. Some epidemiologic and toxicologic research suggests ultrafine particles (UFPs) (< 100 nm) to be more harmful per unit mass than larger particles. Our study was aimed at a quantitative comparison of acute adverse effects of different types of carbonaceous UFPs at a dose range that causes a moderate inflammatory response in lungs.
View Article and Find Full Text PDF