Publications by authors named "Baena D"

Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)-specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations).

View Article and Find Full Text PDF

Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning.

View Article and Find Full Text PDF

Background: Progress in advancing sleep research employing polysomnography (PSG) has been negatively impacted by the limited availability of widely available, open-source sleep-specific analysis tools.

New Method: Here, we introduce Counting Sheep PSG, an EEGLAB-compatible software for signal processing, visualization, event marking and manual sleep stage scoring of PSG data for MATLAB.

Results: Key features include: (1) signal processing tools including bad channel interpolation, down-sampling, re-referencing, filtering, independent component analysis, artifact subspace reconstruction, and power spectral analysis, (2) customizable display of polysomnographic data and hypnogram, (3) event marking mode including manual sleep stage scoring, (4) automatic event detections including movement artifact, sleep spindles, slow waves and eye movements, and (5) export of main descriptive sleep architecture statistics, event statistics and publication-ready hypnogram.

View Article and Find Full Text PDF

We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting.

View Article and Find Full Text PDF

Sleep spindle differences in adolescents with major depressive disorder (MDD) compared to healthy adolescents is an ongoing debate. Results mostly indicate decreased sleep spindle activity in adolescents with MDD. Given that sleep spindles predominate NREM and that acutely delaying the sleep period via a "sleep delay challenge" (SDC) increases non-rapid eye movement (NREM) sleep duration, it may be possible to increase spindle density in adolescents with MDD, which may provide a therapeutic benefit to depression symptoms.

View Article and Find Full Text PDF

The hallmark eye movement (EM) bursts that occur during rapid eye movement (REM) sleep are markers of consolidation for procedural memory involving novel cognitive strategies and problem-solving skills. Examination of the brain activity associated with EMs during REM sleep might elucidate the processes involved in memory consolidation, and may uncover the functional significance of REM sleep and EMs themselves. Participants performed a REM-dependent, novel procedural problem-solving task (i.

View Article and Find Full Text PDF

Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation.

View Article and Find Full Text PDF

Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual differences in cognitive abilities and aptitudes. Recent simultaneous electroencephalography with functional magnetic resonance imaging (EEG-fMRI) studies suggest that the magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs between uncoupled spindles, uncoupled slow waves (SW), and coupled SW-SP complexes, nor have the functional-neuroanatomical substrates that support this relationship been identified.

View Article and Find Full Text PDF

There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h.

View Article and Find Full Text PDF

Sleep is thought to play a complementary role in human memory processing: sleep loss impairs the formation of new memories during the following awake period and, conversely, normal sleep promotes the strengthening of the already encoded memories. However, whether sleep can strengthen deteriorated memories caused by insufficient sleep remains unknown. Here, we showed that sleep restriction in a group of participants caused a reduction in the stability of EEG activity patterns across multiple encoding of the same event during awake, compared with a group of participants that got a full night's sleep.

View Article and Find Full Text PDF

Objectives: To describe qualitatively and quantitatively the directions and magnitudes of rotations of permanent maxillary central incisors and first molars in the mixed dentition in repaired complete unilateral cleft lip and palate (UCLP) and study their associations with absence of teeth in their vicinity.

Materials And Methods: Dental casts and orthodontic records taken prior to orthodontic preparation for alveolar bone grafting of 74 children with repaired UCLP (53 male, 21 female; aged 8.9 ± 1.

View Article and Find Full Text PDF

In mild cognitive impairment (MCI), the APOE4 genotype is associated with accelerated memory decline, likely due to the impact of neuropathology on main cerebral networks required for successful memory retrieval and/or to decreased capacity for recruiting secondary networks that might compensate for that brain damage. Here, we tested this hypothesis in twenty-six healthy older adults and thirty-four MCI patients, of which sixteen were APOE4 carriers. Compared to controls, MCI showed hippocampal volume reduction, cortical thinning in frontal, temporal and parietal regions, and dysfunctional EEG oscillations across fronto-temporal networks.

View Article and Find Full Text PDF

Objective: To compare the mixed dentition incisor and molar overjet, severity of contraction of the dental arch, and the sagittal molar relationship on the cleft side vs the noncleft side in children with repaired complete unilateral cleft of the lip and palate (UCLP).

Materials And Methods: Orthodontic records taken prior to orthodontic preparation for alveolar bone grafting were screened to select study casts from patients with nonsyndromic repaired complete UCLP who did not have mandibular skeletal or dental asymmetry. The study sample comprised dental casts from 74 children aged 8.

View Article and Find Full Text PDF