ACS Appl Mater Interfaces
September 2019
Co/Fe oxyhydroxide catalysts have been deposited onto the surface of amorphous carbons or different perovskite oxides. By performing electrochemical characterizations and operando X-ray absorption spectroscopy measurements, novel insights into Co/Fe oxyhydroxide catalysts and their interactions with perovskite oxides have been revealed. The addition of Fe into Co oxyhydroxide catalysts greatly enhances the oxygen evolution reaction (OER) activity by stabilizing the Co cations into a lower oxidation state under operative conditions compared to the case of undoped Co oxyhydroxide.
View Article and Find Full Text PDFPerovskite oxides have been at the forefront among catalysts for the oxygen evolution reaction (OER) in alkaline media offering a higher degree of freedom in cation arrangement. Several highly OER active Co-based perovskites have been known to show extraordinary activities and stabilities when the B-site is partially occupied by Fe. At the current stage, the role of Fe in enhancing the OER activity and stability is still unclear.
View Article and Find Full Text PDFOsteoconductive, biocompatible, and resorbable organic/inorganic composites are most commonly used in fixation medical devices, such as suture anchors and interference screws, because of their unique physical and chemical properties. Generally, studies on biodegradable composites have focused on their mechanical properties based on the composition and the individual roles of organic and inorganic biomaterials. In this study, we prepared biodegradable organic/inorganic nanocomposite materials using the solvent mixing process and conventional molding.
View Article and Find Full Text PDFThe growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research.
View Article and Find Full Text PDF