Publications by authors named "Bae Hyung Kim"

Objective: Although plane wave imaging (PWI) with multiple plane waves (PWs) steered at different angles enables ultrafast three-dimensional (3-D) ultrasonic imaging, there is still a challenging tradeoff between image quality and frame rate. To address this challenge, we recently proposed the aperiodic PWI (APWI) with mathematical analysis and simulation study. In this paper, we demonstrate the feasibility of APWI and evaluate the performance with phantom and in vivo experiments.

View Article and Find Full Text PDF

Ultrasound measurements of detrusor muscle thickness have been proposed as a diagnostic biomarker in patients with bladder overactivity and voiding dysfunction. In this study, we present an approach based on deep learning (DL) and dynamic programming (DP) to segment the bladder sac and measure the detrusor muscle thickness from transabdominal 2D B-mode ultrasound images. To assess the performance of our method, we compared the results of automated methods to the manually obtained reference bladder segmentations and wall thickness measurements of 80 images obtained from 11 volunteers.

View Article and Find Full Text PDF

Sparse arrays reduce the number of active channels that effectively increases the inter-element spacing. Large inter-element spacing results in grating lobe artifacts degrading the ultrasound image quality and reducing the contrast-to-noise ratio. A deep learning-based custom algorithm is proposed to estimate inactive channel data in periodic sparse arrays.

View Article and Find Full Text PDF

Objectives: To evaluate the predictive performance of comb-push ultrasound shear elastography for the differentiation of reactive and metastatic axillary lymph nodes.

Methods: From June 2014 through September 2018, 114 female volunteers (mean age 58.1±13.

View Article and Find Full Text PDF

This work extends the effective aperture size by coherently compounding the received radio frequency data from multiple transducers. As a result, it is possible to obtain an improved image, with enhanced resolution, an extended field of view (FoV), and high-acquisition frame rates. A framework is developed in which an ultrasound imaging system consisting of N synchronized matrix arrays, each with partly shared FoV, take turns to transmit plane waves (PWs).

View Article and Find Full Text PDF

Sparse array (SA) is an approach to reduce the number of system channels. However, SA suffers from grating lobe (GL) artefacts due to the sparsity of array aperture resulting in degradation of the ultrasound image quality. Based on a given or known data sets of radio frequency (RF) echo acquired from active elements of an array, RF echo data in unknown and/or inactive elements of array can be created virtually and used to suppress the GL artefact in SA.

View Article and Find Full Text PDF

It has been reported that the frequency bandwidth of capacitive micro-machined ultrasonic transducers (CMUTs) is relatively broader than that of other ceramic-based conventional ultrasonic transducers. In this paper, a feasibility study for orthogonal chirp coded excitation to efficiently make use of the wide bandwidth characteristic of CMUT array is presented. The experimental result shows that the two orthogonal chirps mixed and simultaneously fired in CMUT array can be perfectly separated in decoding process of the received echo signal without sacrificing the frequency bandwidth each chirp.

View Article and Find Full Text PDF

Rationale And Objectives: Low specificity of traditional ultrasound in differentiating benign from malignant thyroid nodules leads to a great number of unnecessary (ie, benign) fine-needle aspiration biopsies that causes a significant financial and physical burden to the patients. Ultrasound shear wave elastography is a technology capable of providing additional information related to the stiffness of tissues. In this study, quantitative stiffness values acquired by ultrasound shear wave elastography in two different imaging planes were evaluated for the prediction of malignancy in thyroid nodules.

View Article and Find Full Text PDF

The compression error of post-compression based coded excitation techniques increases with decreasing f-number, which causes the elevation of side-lobe levels. In this paper, a post-compression based coded excitation technique with reduced compression errors through dynamic aperture control is proposed. To improve the near-field resolution with no frame rate reduction, the proposed method performs simultaneous transmit multi-zone focusing using two mutually orthogonal complementary Golay codes.

View Article and Find Full Text PDF