Publications by authors named "Badurek G"

We report on first experimental tests of a neutron magnetic spin resonator at a very cold neutron beam port of the high flux reactor at the ILL Grenoble. When placed between two supermirror neutron polarizers and operated in a pulsed traveling-wave mode it allows to decouple its time- and wavelength-resolution and can therefore be used simultaneously as electronically tunable monochromator and fast beam chopper. As a first 'real' scientific application we intend its implementation in the PERC (p roton and e lectron r adiation c hannel) project related to high-precision experiments in neutron beta decay.

View Article and Find Full Text PDF

In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies.

View Article and Find Full Text PDF

In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

View Article and Find Full Text PDF

An experimental demonstration of quantum contextuality with neutrons is presented, which intended to exhibit a Kochen-Specker-like phenomenon. Since no perfect correlation is expected in practical experiments, inequalities are derived to distinguish quantitatively the obtained results from predictions by a noncontextual hidden variable theory. Experiments were accomplished with the use of a neutron interferometer combined with spinor manipulation devices.

View Article and Find Full Text PDF

By means of neutron interferometry the s-wave neutron scattering length of the (3)He nucleus was re-measured at the Institut Laue-Langevin (ILL). Using a skew symmetrical perfect crystal Si-interferometer and a linear twin chamber cell, false phase shifts due to sample misalignment were reduced to a negligible level. Simulation calculations suggest an asymmetrically alternating measuring sequence in order to compensate for systematic errors caused by thermal phase drifts.

View Article and Find Full Text PDF

The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars.

View Article and Find Full Text PDF

Non-local correlations between spatially separated systems have been extensively discussed in the context of the Einstein, Podolsky and Rosen (EPR) paradox and Bell's inequalities. Many proposals and experiments designed to test hidden variable theories and the violation of Bell's inequalities have been reported; usually, these involve correlated photons, although recently an experiment was performed with (9)Be(+) ions. Nevertheless, it is of considerable interest to show that such correlations (arising from quantum mechanical entanglement) are not simply a peculiarity of photons.

View Article and Find Full Text PDF

Off-diagonal geometric phases acquired by an evolution of a 1/2-spin system have been observed by means of a polarized neutron interferometer. We have successfully measured the off-diagonal phase for noncyclic evolutions even when the diagonal geometric phase is undefined. Our data confirm theoretical predictions and the results illustrate the significance of the off-diagonal phase.

View Article and Find Full Text PDF