Background: Code-free deep learning (CFDL) is a novel tool in artificial intelligence (AI). This study directly compared the discriminative performance of CFDL models designed by ophthalmologists without coding experience against bespoke models designed by AI experts in detecting retinal pathologies from optical coherence tomography (OCT) videos and fovea-centered images.
Methods: Using the same internal dataset of 1,173 OCT macular videos and fovea-centered images, model development was performed simultaneously but independently by an ophthalmology resident (CFDL models) and a postdoctoral researcher with expertise in AI (bespoke models).
Background And Objective: The detection of retinal diseases using optical coherence tomography (OCT) images and videos is a concrete example of a data classification problem. In recent years, Transformer architectures have been successfully applied to solve a variety of real-world classification problems. Although they have shown impressive discriminative abilities compared to other state-of-the-art models, improving their performance is essential, especially in healthcare-related problems.
View Article and Find Full Text PDF