Background: In unforeseen situations, such as nuclear power plant's or civilian radiation accidents, there is a need for effective and computationally inexpensive methods to determine the expression level of a selected gene panel, allowing for rough dose estimates in thousands of donors. The new generation in-situ mapper, fast and of low energy consumption, working at the level of single nanopore output, is in demand. We aim to create a sequence identification tool that utilizes natural language processing techniques and ensures a high level of negative predictive value (NPV) compared to the classical approach.
View Article and Find Full Text PDFPurpose: In this short tale, we describe a year of Pierre Chris Curry's ionizing radiation (IR) exposure, assessing and summarizing how much he has been exposed to over a year of his fictive life, cumulating the different types of exposures (either due to natural radiation, occupational and medical exposure), while staying reasonably credible. We have limited ourselves to IR exposure. As a recognized specialist in interventional cardiac surgery, Pierre provides lectures at international conferences requiring overseas flights.
View Article and Find Full Text PDFPurpose: Radiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability.
View Article and Find Full Text PDFIntroduction: Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy).
Methods: Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.
As the great majority of gene expression (GE) biodosimetry studies have been performed using blood as the preferred source of tissue, searching for simple and less-invasive sampling methods is important when considering biodosimetry approaches. Knowing that whole saliva contains an ultrafiltrate of blood and white blood cells, it is expected that the findings in blood can also be found in saliva. This human in vivo study aims to examine radiation-induced GE changes in saliva for biodosimetry purposes and to predict radiation-induced disease, which is yet poorly characterized.
View Article and Find Full Text PDFCancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes.
View Article and Find Full Text PDFTherapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10-20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML.
View Article and Find Full Text PDFIonizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene . We generated a heterozygous CBA R235 mouse (CBA) which develops AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation.
View Article and Find Full Text PDFTools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results.
View Article and Find Full Text PDFExtracellular vesicles (EVs), through their cargo, are important mediators of bystander responses in the irradiated bone marrow (BM). MiRNAs carried by EVs can potentially alter cellular pathways in EV-recipient cells by regulating their protein content. Using the CBA/Ca mouse model, we characterised the miRNA content of BM-derived EVs from mice irradiated with 0.
View Article and Find Full Text PDFLarge scale and low-cost nanopatterning of materials is of tremendous interest for optoelectronic devices. Nanoimprint lithography has emerged in recent years as a nanofabrication strategy that is high-throughput and has a resolution comparable to that of electron-beam lithography (EBL). It is enabled by pattern replication of an EBL master into polydimethylsiloxane (PDMS), that is then used to pattern a resist for further processing, or a sol-gel that could be calcinated into a solid material.
View Article and Find Full Text PDFPurpose: The ongoing SARS-CoV-2 pandemic has resulted in over 6.3 million deaths and 560 million COVID-19 cases worldwide. Clinical management of hospitalized patients is complex due to the heterogeneous course of COVID-19.
View Article and Find Full Text PDFEarly and high-throughput individual dose estimates are essential following large-scale radiation exposure events. In the context of the Running the European Network for Biodosimetry and Physical Dosimetry (RENEB) 2021 exercise, gene expression assays were conducted and their corresponding performance for dose-assessment is presented in this publication. Three blinded, coded whole blood samples from healthy donors were exposed to 0, 1.
View Article and Find Full Text PDFPurpose: The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome.
View Article and Find Full Text PDFIn vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions.
View Article and Find Full Text PDFThe aim of this review is to investigate the literature pertaining to the potential risks of low-dose ionizing radiation to Lynch syndrome patients by use of computed tomography (CT), either diagnostic CT colonography (CTC), standard staging CT or CT surveillance. Furthermore, this review explores the potential risks of using radiotherapy for treatment of rectal cancer in these patients. No data or longitudinal observational studies of the impact of radiation exposure on humans with Lynch syndrome were identified.
View Article and Find Full Text PDFExternal beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans.
View Article and Find Full Text PDFHaematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR.
View Article and Find Full Text PDFThe quest for the discovery and validation of radiosensitivity biomarkers is ongoing and while conventional bioassays are well established as biomarkers, molecular advances have unveiled new emerging biomarkers. Herein, we present the validation of a new 4-gene signature panel of CDKN1, FDXR, SESN1 and PCNA previously reported to be radiation-responsive genes, using the conventional G2 chromosomal radiosensitivity assay. Radiation-induced G2 chromosomal radiosensitivity at 0.
View Article and Find Full Text PDFHumans have learned to harness the power of radiation for therapeutic ends, with 50% of all patients diagnosed with cancer undergoing radiotherapy as part of their treatment [...
View Article and Find Full Text PDFIn the past decade, radiation therapy (RT) entered the era of personalized medicine, following the striking improvements in radiation delivery and treatment planning optimization, and in the understanding of the cancer response, including the immunological response. The next challenge is to identify the optimal radiation regimen(s) to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor microenvironment (e.
View Article and Find Full Text PDFLarge-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates.
View Article and Find Full Text PDF