Publications by authors named "Badi Sri Sailaja"

This study aims to investigate the anti-inflammatory effects of moringa isothiocyanate-1 (MIC-1) extracted from seeds of Moringa oleifera Lam. in lipopolysaccharide (LPS)-induced inflammation models. MIC-1 decreased nitric oxide production and reduced the expression of pro-inflammatory markers (TNF-α, Ifn-α, IL-1β, IL-6) in C2C12 myoblasts.

View Article and Find Full Text PDF

This study aims to document the dual mode of pharmacological action of moringa isothiocyanate-1 (MIC-1) derived from seeds of Moringa oleifera Lam. Oral administration of chemically stable MIC-1 (80 mg/kg) significantly reduced the expression of inflammatory markers (Tnf-α, Ifn-α, IL-1β, IL-6) in the liver, kidney, spleen, and colon and decreased spleen weight in the lipopolysaccharide (LPS)-induced sepsis / acute inflammation model in mice. Transcriptomic analysis of the effect of MIC-1 on the liver and in the LPS-induced RAW264.

View Article and Find Full Text PDF

Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression.

View Article and Find Full Text PDF
Article Synopsis
  • Embryonic stem cells (ESCs) are influenced by transcription factors and chromatin regulators, and a screen was conducted to find additional stem cell regulators by looking for changes in fluorescence during differentiation.
  • SET was identified as a key regulator that shifts from the SETα isoform in ESCs to the SETβ isoform in differentiated cells through alternative promoters.
  • Depletion of SET leads to slowed cell proliferation, disrupted neuronal differentiation, and developmental issues, highlighting its crucial role in maintaining the chromatin structure necessary for pluripotency and early differentiation.
View Article and Find Full Text PDF

The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells.

View Article and Find Full Text PDF

The molecular processes underlying intestinal adaptation to fasting and re-feeding remain largely uncharacterized. In this issue of Cell Reports, Richmond et al. report that dormant intestinal stem cells are regulated by PTEN and nutritional status.

View Article and Find Full Text PDF

Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1.

View Article and Find Full Text PDF

Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals.

View Article and Find Full Text PDF

Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC) lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs.

View Article and Find Full Text PDF

Stress induces long-lasting changes in neuronal gene expression and cholinergic neurotransmission, but the underlying mechanism(s) are incompletely understood. Here, we report that chromatin structure and histone modifications are causally involved in this transcriptional memory. Specifically, the AChE gene encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase is known to undergo long-lasting transcriptional and alternative splicing changes after stress.

View Article and Find Full Text PDF

Histones, the building blocks of eukaryotic chromatin, are essential for genome packaging, function and regulation. However, little is known about their transcriptional regulation. Here we conducted a comprehensive computational analysis, based on chromatin immunoprecipitation-sequencing and -microarray analysis (ChIP-seq and ChIP-chip) data of over 50 transcription factors and histone modifications in mouse embryonic stem cells.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) has been developed for studying protein-DNA interactions and has been extensively used for mapping the localization of posttranslationally modified histones, histone variants, transcription factors, or chromatin modifying enzymes at a given locus or on a genome-wide scale. ChIP methods have been modified and improved over the years to fit a variety of different cell types and tissues. Here, we present a detailed protocol for hippocampal ChIP, of both minced tissue and enzyme-separated hippocampal cells.

View Article and Find Full Text PDF

Embryonic stem cell (ESC) chromatin is characterized by a unique set of histone modifications, including enrichment for H3 lysine 9 acetylation (H3K9ac). Recent studies suggest that histone deacetylase (HDAC) inhibitors promote pluripotency. Here, using H3K9ac ChIP followed by high throughput sequencing analyses and gene expression in E14 mouse ESCs before and after treatment with a low level of the HDAC inhibitor valproic acid, we show that H3K9ac is enriched at gene promoters and is highly correlated with gene expression and with various genomic features, including different active histone marks and pluripotency-related transcription factors.

View Article and Find Full Text PDF

DNA-binding anticancer agents cause alteration in chromatin structure and dynamics. We report the dynamic interaction of the DNA intercalator and potential anticancer plant alkaloid, sanguinarine (SGR), with chromatin. Association of SGR with different levels of chromatin structure was enthalpy driven with micromolar dissociation constant.

View Article and Find Full Text PDF