The optoelectronic properties of a fully processed red emitting AlGaInP micro-diode device is measured using standard I-V and luminescence measurements. A thin specimen is then prepared for in situ transmission electron microscopy analysis by focused ion beam milling, then the changes of electrostatic potential as a function of applied forward bias voltage are mapped by off-axis electron holography. We demonstrate that the quantum wells in the diode sit on a potential gradient until the threshold forward bias voltage for light emission is reached; at which point the quantum wells are aligned at the same potential.
View Article and Find Full Text PDFWe investigated the use of photonic crystals with different opto-geometrical parameters for light extraction from AlGaInP/InGaP MQW color converters. Blue-to-red and green-to-red color conversions were demonstrated using room-temperature photoluminescence with excitation wavelengths at 405nm and 514nm. Complete, compact and highly directional light extraction was demonstrated.
View Article and Find Full Text PDFIn this paper, the 200mm silicon-on-insulator (SOI) platform is used to demonstrate the monolithic co-integration of hybrid III-V/silicon distributed Bragg reflector (DBR) tunable lasers and silicon Mach-Zehnder modulators (MZMs), to achieve fully integrated hybrid transmitters for silicon photonics. The design of each active component, as well as the fabrication process steps of the whole architecture are described in detail. A data transmission rate up to 25Gb/s has been reached for transmitters using MZMs with active lengths of 2mm and 4mm.
View Article and Find Full Text PDFWe report on the design, fabrication and performance of the first hetero-integrated III-V on silicon sampled-grating distributed Bragg reflector lasers (SGDBR) operating in the O-band and based on direct bonding and adiabatic coupling. Two devices with different geometric parameters are presented both showing an output power in the Si waveguide as high as 7.5 mW and a continuous tuning range of 27 and 35 nm respectively with a side mode suppression ration higher than 35 dB.
View Article and Find Full Text PDFWe report on the design, fabrication, and characterization of a 1×4 silicon-on-insulator (SOI) demultiplexer exhibiting a significant reduction of its thermo-optical sensitivity in the O-band. The optical filtering is achieved by cascading several Mach-Zehnder interferometers (MZIs) fabricated on a 300-nm-thick SOI platform. Owing to an asymmetric design of the confinement for each MZIs, we found an athermal criterium that satisfies the spectral requirements.
View Article and Find Full Text PDFWe report on the design, fabrication and performance of a hetero-integrated III-V on silicon distributed feedback lasers (DFB) at 1310 nm based on direct bonding and adiabatic coupling. The continuous wave (CW) regime is achieved up to 55 °C as well as mode-hop-free operation with side-mode suppression ratio (SMSR) above 55 dB. At room temperature, the current threshold is 36 mA and the maximum coupled power in the silicon waveguide is 22 mW.
View Article and Find Full Text PDFThe authors report on the design, fabrication and operation of heterogeneous and compact "2.5 D" Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission.
View Article and Find Full Text PDF