Publications by authors named "Badavi F"

3DHZETRN-v2 includes a detailed three dimensional (3D) treatment of neutron/light-ion transport based on a quasi-elastic/multiple production assumption allowing improved agreement of the neutron/light-ion fluence compared with results of three Monte Carlo (MC) codes in the sense that the variance with respect to the individual MC results is less than the variance among the MC code results. The current numerical methods are no longer the main limitation to HZETRN code development and further changes in the nuclear model are required. In a prior study, an improved quasi-elastic spectrum based on a solution of the transport approximation to nuclear media effects showed promise, but the remaining multiple-production spectrum was based on a database derived from the Ranft model that used Bertini multiplicities.

View Article and Find Full Text PDF

The space radiation environment is a complex mixture of particle types and energies originating from sources inside and outside of the galaxy. These environments may be modified by the heliospheric and geomagnetic conditions as well as planetary bodies and vehicle or habitat mass shielding. In low Earth orbit (LEO), the geomagnetic field deflects a portion of the galactic cosmic rays (GCR) and all but the most intense solar particle events (SPE).

View Article and Find Full Text PDF

Galactic cosmic rays (GCR) are a constant source of radiation that constitutes one of the major hazards during deep space exploration missions for both astronauts and hardware. In this work, GCR models commonly used by the space radiation protection community are compared with recently published high-precision, high-resolution measurements of cosmic ray lithium, beryllium, boron, carbon, nitrogen, and oxygen fluxes along with their ratios (Li/B, Li/C, Li/O, Be/B, Be/C, Be/O, B/C, B/O, C/O, N/B, N/O) from the Alpha Magnetic Spectrometer (AMS). All of the models were developed and calibrated prior to the publication of this AMS data, therefore this is an opportunity to validate the models against an independent data set.

View Article and Find Full Text PDF

This paper is the third in a series of comparisons of American (NASA) and Russian (ROSCOSMOS) space radiation calculations. The present work focuses on calculation of fluxes of galactic cosmic rays (GCR), which are a constant source of radiation that constitutes one of the major hazards during deep space exploration missions for both astronauts/cosmonauts and hardware. In this work, commonly used GCR models are compared with recently published measurements of cosmic ray Hydrogen, Helium, and the Boron-to-Carbon ratio from the Alpha Magnetic Spectrometer (AMS).

View Article and Find Full Text PDF

A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry.

View Article and Find Full Text PDF

The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry.

View Article and Find Full Text PDF

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space.

View Article and Find Full Text PDF

The 3DHZETRN formalism was recently developed as an extension to HZETRN with an emphasis on 3D corrections for neutrons and light ions. Comparisons to Monte Carlo (MC) simulations were used to verify the 3DHZETRN methodology in slab and spherical geometry, and it was shown that 3DHZETRN agrees with MC codes to the degree that various MC codes agree among themselves. One limitation of such comparisons is that all of the codes (3DHZETRN and three MC codes) utilize different nuclear models/databases; additionally, using a common nuclear model is impractical due to the complexity of the software.

View Article and Find Full Text PDF

The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS.

View Article and Find Full Text PDF

A computationally efficient 3DHZETRN code capable of simulating High (H) Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods.

View Article and Find Full Text PDF

The NCRP has recently defined RBE values and a new quantity (Gy-Eq) for use in estimation of deterministic effects in space shielding and operations. The NCRP's RBE for neutrons is left ambiguous and not fully defined. In the present report we will suggest a complete definition of neutron RBE consistent with the NCRP recommendations and evaluate attenuation properties of deterministic effects (Gy-Eq) in comparison with other dosimetric quantities.

View Article and Find Full Text PDF

The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge.

View Article and Find Full Text PDF

Radiation is a primary concern in the planning of a manned mission to Mars. Recent studies using NASA Langley Research Center's HZETRN space radiation transport code show that the low energy neutron fluence on the Martian surface is larger than previously expected. The upper atmosphere of Mars is exposed to a background radiation field made up of a large number of protons during a solar particle event and mixture of light and heavy ions caused by galactic cosmic rays at other times.

View Article and Find Full Text PDF

In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools.

View Article and Find Full Text PDF

The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses.

View Article and Find Full Text PDF

The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications.

View Article and Find Full Text PDF

The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams.

View Article and Find Full Text PDF

We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described.

View Article and Find Full Text PDF

Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit.

View Article and Find Full Text PDF

Radiation risks to astronauts depend on the microscopic fluctuations of energy absorption events in specific tissues. These fluctuations depend not only on the space environment but also on the modifications of that environment by the shielding provided by structures surrounding the astronauts and the attenuation characteristics of the astronaut's body. The effects of attenuation within the shield and body depends on the tissue biological response to these microscopic fluctuations.

View Article and Find Full Text PDF

The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series.

View Article and Find Full Text PDF

When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material.

View Article and Find Full Text PDF

An analytical solution to the perturbative multiple collision series of a fragmenting HZE ion beam has limited usefulness since the first collision term has several hundred contributions, the second collision term has tens of thousands of contributions, and each successive collision term progresses to unwieldy computational proportions. Our previous work has revealed the multiple collision terms in the straight-ahead approximation to be simple products of a spatially dependent factor times a linear energy-dependent factor of limited domain and unit normalization. The properties of these forms allow the development of the nonperturbative summation of the series to all orders assuming energy-independent nuclear cross sections as matrix products of a scaled Green's function described herein.

View Article and Find Full Text PDF

The semiempirical abrasion/ablation model has been successful in generating a large nuclear data base for use in the study of high charge and energy (HZE) ion beams, radiation physics and galactic cosmic ray shielding. The cross sections generated agree with the measured HZE fragmentation data to the degree that different experimental groups agree among themselves. Several improvements in the model have been made including a Coulomb trajectory correction, an improved treatment of nuclear attenuation factors, an improved second order correction to the spectator fragment excitation spectrum, a pre-equilibrium emission process, and competitive equilibrium emission of additional hydrogen and helium isotope fragments.

View Article and Find Full Text PDF

The development of the theory of high charge and energy (HZE) ion transport is reviewed. The basic solution behavior and approximation techniques will be described. An overview of the HZE transport codes currently available at the Langley Research Center will be given.

View Article and Find Full Text PDF