Tissues are generally subjected to external stresses, a potential stimulus for their differentiation or remodeling. While single-cell rheology has been extensively studied leading to controversial results about nonlinear response, mechanical tissue behavior under external stress is still poorly understood, in particular, the way individual cell properties translate at the tissue level. Herein, using magnetic cells we were able to form perfectly monitored cellular aggregates (magnetic molding) and to deform them under controlled applied stresses over a wide range of timescales and amplitudes (magnetic rheometer).
View Article and Find Full Text PDFRationale & Objective: Fibrinogen A α-chain amyloidosis (AFib amyloidosis) is a form of amyloidosis resulting from mutations in the fibrinogen A α-chain gene (FGA), causing progressive kidney disease leading to kidney failure. Treatment may include kidney transplantation (KT) or liver-kidney transplantation (LKT), but it is not clear what factors should guide this decision. The aim of this study was to characterize the natural history and long-term outcomes of this disease, with and without organ transplantation, among patients with AFib amyloidosis and various FGA variants.
View Article and Find Full Text PDFStimuli-responsive compartments are attracting more and more attention through the years motivated by their wide applications in different fields including encapsulation, manipulation, and triggering of chemical reactions on demand. Among others, magnetic responsive compartments are particularly attractive due to the numerous advantages of magnetic fields compared to other external stimuli. In this article, we used an oil-based ferrofluid where the magnetic nanoparticles have been coated with different polymers to increase their amphiphilic character and surface activity, consequently rendering the interface magnetically responsive.
View Article and Find Full Text PDFWe report the first quantitative measurements of the resonance frequencies of a torus of fluid confined in a horizontal Hele-Shaw cell. By using the unwetting property of a metal liquid, we are able to generate a stable torus of fluid with an arbitrary aspect ratio. When subjected to vibrations, the torus displays azimuthal patterns at its outer periphery.
View Article and Find Full Text PDFPurpose The purpose of this study was to evaluate the safety of antithrombotic treatments prescribed during pregnancy in patients with antiphospholipid syndrome (APS). Methods This international, multicenter study included two cohorts of patients: a retrospective French cohort and a prospective US cohort (PROMISSE study). Inclusion criteria were (1) APS (Sydney criteria), (2) live pregnancy at 12 weeks of gestation (WG) with (3) follow-up data until six weeks post-partum.
View Article and Find Full Text PDFIn order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed.
View Article and Find Full Text PDFThe usage of micro or nanorods is steadily increasing in various applications from fundamental research to industry. Therefore their geometrical, mechanical and eventually magnetic properties need to be well determined. Here, using an optical microscope equipped with magnetic tweezers, we report an experimental procedure to obtain all those information on a single magnetic rod.
View Article and Find Full Text PDFClusters of magnetic nanoparticles have received considerable interest in various research fields. Their capacity to generate heat under an alternating magnetic field has recently opened the way to applications such as cancer therapy by hyperthermia. This work is an attempt to investigate the collective effects of interacting dipoles embedded in magnetic nano-particles (MNP) to predict their thermal dissipation with a liquid.
View Article and Find Full Text PDFWe report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved.
View Article and Find Full Text PDFIn its simplest form the magnetoelastic buckling instability refers to the sudden bending transition of an elastic rod experiencing a uniform induction field applied at a normal angle with respect to its long axis. This fundamental physics phenomenon was initially documented in 1968, and, surprisingly, despite many refinements, a gap has always remained between the observations and the theoretical expectations. Here, we first renew the theory with a simple model based on the assumption that the magnetization follows the rod axis as soon as it bends.
View Article and Find Full Text PDFCellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity.
View Article and Find Full Text PDFA current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure.
View Article and Find Full Text PDFIn recent decades, significant advances have been made in the description and modelling of tissue morphogenesis. By contrast, the initial steps leading to the formation of a tissue structure, through cell-cell adhesion, have so far been described only for small numbers of interacting cells. Here, through the use of remote magnetic forces, we succeeded at creating cell aggregates of half million cells, instantaneously and for several cell types, not only those known to form spheroids.
View Article and Find Full Text PDFThe intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system.
View Article and Find Full Text PDFEur Phys J E Soft Matter
November 2012
Among the various locomotion strategies of the animal kingdom, the undulation locomotion is of particular interest for biomimetic applications. In this paper, we present an artificial swimmer set into motion by a new and non-trivial undulation mechanism, based on the twisting and buckling of its body. The swimmer consists of a long cylinder of ferrogel which is polarized transversely and in opposite directions at each extremity.
View Article and Find Full Text PDFIn the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI T(1) and T(2) contrast effect. Multi-core nanoparticles composed of maghemite cores were synthesized through a polyol approach, and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size and hence magnetic properties.
View Article and Find Full Text PDFBackground: In patients with chronic kidney disease, vitamin D insufficiency is highly prevalent. It can be corrected by supplementation with either vitamin D(2) or vitamin D3. Recent studies in patients without impaired kidney function suggest that vitamin D(3) is more efficient than vitamin D(2) in correcting vitamin D insufficiency.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2012
During the last decade, the development of nanomaterials to penetrate inside living cells has been the focus of a large number of studies, with applications for the biomedical field. However, the further dynamics of these nanomaterials inside the cells is dictated by the intracellular environment and in particular its mechanical properties. The mechanical characteristics of the cell interior can be probed with either active or passive microrheological approaches.
View Article and Find Full Text PDFOne of the first biointeractions of magnetic nanoparticles with living systems is characterized by nanoparticle-protein complex formation. The proteins dynamically encompass the particles in the protein corona. Here we propose a method based on nanomagnetism that allows a specific in situ monitoring of interactions between iron oxide nanoparticles and blood plasma.
View Article and Find Full Text PDFAntiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by arterial and/or venous thromboses and/or pregnancy-associated morbidity. Some patients develop only obstetric complications (obstetric APS), but data on the frequency of thrombotic events during the follow-up of these patients are scarce. This study was undertaken to evaluate the rate of thrombotic events after obstetric APS diagnosis according to the 2006 revised criteria.
View Article and Find Full Text PDFWe report the first observation of axisymmetric solitary waves on the surface of a cylindrical magnetic fluid layer surrounding a current-carrying metallic tube. According to the ratio between the magnetic and capillary forces, both elevation and depression solitary waves are observed with profiles in good agreement with theoretical predictions based on the magnetic analogue of the Korteweg-de Vries equation. We also report the first measurements of the velocity and the dispersion relation of axisymmetric linear waves propagating on the cylindrical ferrofluid layer that are found in good agreement with theoretical predictions.
View Article and Find Full Text PDFBackground: The Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines recommend maintaining serum parathyroid hormone (PTH) concentration between 150 and 300 pg/mL in patients with chronic kidney disease (CKD) stage 5. However, a marked inter-method variability in PTH measurement has been reported recently. The aim of this study was to evaluate whether harmonization of the results measured with two commercial kits known to produce significantly different serum PTH concentrations could be reasonably achieved by a simple procedure.
View Article and Find Full Text PDFIn severe nutriment conditions, the social amoeba Dictyostelium discoideum enters a particular life cycle where it forms multicellular patterns to achieve aggregation. Extensively observed from an initial dispersed state, its developmental program can usefully be studied from a confined population to implement theoretical developments regarding biological self-organization. The challenge is then to form a cell assembly of well-defined geometrical dimensions without hindering cell behavior.
View Article and Find Full Text PDFBy combining magnetic properties with nanosized biocompatible materials, superparamagnetic nanoparticles may serve as colloidal heating mediators for cancer therapy. This unique potential has attracted attention for designing new magnetic nanoparticles with high efficiency heating properties. Their heating power under high frequency magnetic field is governed by the mechanisms of magnetic energy dissipation for single-domain particles due both to internal Néel fluctuations of the particle magnetic moment and to the external Brownian fluctuations.
View Article and Find Full Text PDFUpon drying, colloidal suspensions undergo a phase transformation from a "liquid" to a "gel" state. With further solvent evaporation, tensile stresses develop in the gel, which ultimately leads to fractures. These generally manifest themselves in regular cracking patterns which reflect the physical conditions of the drying process.
View Article and Find Full Text PDF