Publications by authors named "Bacou F"

Introduction: Myostatin (Mstn) is a secreted protein that acts as a negative regulator of skeletal muscle mass. However, a critical evaluation of neuromuscular aspects of hypertrophied muscles induced by Mstn deficiency has not been done.

Methods: We compared the tibialis anterior muscle-nerve interrelationships in wild-type and Mstn-null mice of both genders by immunohistochemical analyses, which allowed us to count the number of total axons and motor axons and estimate the size of motor units and the innervation ratio of the tibialis anterior muscle (TAm).

View Article and Find Full Text PDF
Article Synopsis
  • Wnt proteins, particularly Wnt4, are crucial for muscle cell development and differentiation, showing increased expression during the differentiation phase of C2C12 myoblasts and satellite cells.
  • Overexpression of Wnt4 significantly enhances the differentiation and hypertrophy of these muscle cells, while silencing Wnt4 impairs this process, indicating its positive role in myogenesis.
  • Wnt4 operates through the canonical β-catenin pathway and negatively regulates myostatin, which suggests Wnt4 plays a vital role in muscle hypertrophy by inhibiting myostatin’s differentiating effects.
View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) plays an essential role in neuromuscular transmission. Not surprisingly, neuromuscular transmission during repetitive nerve stimulation is severely depressed in the AChE knockout mouse (KO). However, whether this deficit in AChE leads to skeletal muscle changes is not known.

View Article and Find Full Text PDF

Secreted Frizzled-related proteins (Sfrps) are extracellular regulators of Wnt signalling and play important roles in developmental and oncogenic processes. They are known to be upregulated in regenerating muscle and in myoblast cultures but their function is unknown. Here, we show that the addition of recombinant Sfrp1 or Sfrp2 to C2C12 cell line cultures or to primary cultures of satellite cells results in the inhibition of myotube formation with no significant effect on the cell cycle or apoptosis.

View Article and Find Full Text PDF

We previously showed that transfer of adult myoblasts (MB) into cardiotoxin-damaged muscle improved the properties of reinnervated tibialis anterior muscle of rabbits. However, this cell therapy protocol cannot be applied to humans because of the hazardous effects of the myotoxin. To circumvent this approach, we used the recently developed high-density injection technique to autotransplant cultured cells 1 mm from each other into the tibialis anterior muscle without previous cardiotoxin-induced damage.

View Article and Find Full Text PDF

Skeletal muscle demonstrates a force deficit after repair of injured peripheral nerves. Data from the literature indicate that myoblast transfer enhances recovery of muscle function. Thus, we tested the hypothesis that transfer of adult myoblasts improves the properties of reinnervated rabbit tibialis anterior (TA) muscles in both the short term (4 months) and long term (14 months).

View Article and Find Full Text PDF

The regenerating skeletal muscle environment is capable of inducing uncommitted progenitors to terminally differentiate. The aim of this work was to determine whether adipose tissue-derived stromal cells were able to participate in muscle regeneration and to characterize the effect on muscle mass and functional capacities after transplantation of these cells. Adipose tissue stromal cells labeled with Adv cyto LacZ from 3-day-old primary cultures (SVF1) were autotransplanted into damaged tibialis anterior muscles.

View Article and Find Full Text PDF

The regenerating skeletal muscle environment is capable of inducing uncommitted progenitors to terminally differentiate. The aim of this work was to determine whether adipose tissue-derived stromal cells were able to participate in muscle regeneration and to characterize the effect on muscle mass and functional capacities after transplantation of these cells. Adipose tissue stromal cells labeled with Adv cyto LacZ from 3-day-old primary cultures (SVF1) were autotransplanted into damaged tibialis anterior muscles.

View Article and Find Full Text PDF

Skeletal muscle demonstrates a force deficit after repair of injured peripheral nerves. We tested the hypothesis that transplantation of satellite cells into reinnervated rabbit tibialis anterior (TA) muscles improves their properties. Adult rabbits underwent transection and immediate suture of the common peroneal nerve.

View Article and Find Full Text PDF

Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. An increasing number of reports demonstrate that cells from adipose lineages (preadipocytes and adipocytes) and macrophages share numerous functional or antigenic properties. No large scale comparison reflecting the phenotype complexity has been performed between these different cell types until now.

View Article and Find Full Text PDF

Changes in morphology, metabolism, myosin heavy chain gene expression, and functional performances in damaged rabbit muscles with or without transplantation of primary satellite cells were investigated. For this purpose, we damaged bilaterally the fast muscle tibialis anterior (TA) with either 1.5 or 2.

View Article and Find Full Text PDF

Changes in morphology, metabolism, myosin heavy chain gene expression, and functional performances in damaged rabbit muscles with or without transplantation of primary satellite cells were investigated. For this purpose, we damaged bilaterally the fast muscle tibialis anterior (TA) with either 1.5 or 2.

View Article and Find Full Text PDF

Satellite cells derived from fast- and slow-twitch muscles have different properties in culture. We have used the differential display technique to retrieve genes differentially expressed in fast- and slow-twitch muscle satellite cell cultures. Amongst these genes we have identified, cloned, sequenced and studied the expression in muscle of rabbit secreted frizzled related protein 2 (SFRP2) mRNA, whose importance in cell fate determination has been well documented.

View Article and Find Full Text PDF

X chromosome-linked muscular dystrophic mdx mouse lacks the sarcolemmal protein dystrophin and represents a genetic homologue of human Duchenne muscular dystrophy (DMD). The present study analysed some aspects of pathological processes such as fibrosis, frequency of centralized nuclei, presence of degenerative or regenerative fibres, expression of utrophin and associated protein complexes, and myosin heavy chain isoforms in three muscles [diaphragm (DIA), gastrocnemius (GTC) and masseter (MAS)] from old male mdx mice. All parameters investigated comparatively in these pathological muscles provided evidence that the MAS mdx muscle presents a slight deterioration pattern in comparison to that of DIA and GTC muscles.

View Article and Find Full Text PDF

Hypothesis: Treatment of fecal incontinence has been greatly improved by electrical stimulation of gracilis muscle transposed around the anal canal. Various configurations of the muscle have been used: single alpha, gamma, epsilon muscle loops, split sling, or double wrap. We report herein experimental data on muscle transformation and damage induced by the latter surgical approach.

View Article and Find Full Text PDF

Purpose: Chronic low-frequency electrical stimulation can safely transform fatiguing muscle into fatigue-resistant muscle. This fundamental discovery was used to reconstruct the anal sphincter. Dynamic graciloplasty was found to be effective in the treatment of fecal incontinence.

View Article and Find Full Text PDF

Denervation of skeletal muscle results in rapid atrophy with loss of contractile mass and/or progressive degeneration of muscle fibers which are replaced to a greater or lesser degree by connective and fatty tissues. In this study, we show that denervated rabbit muscles are transformed into a white adipose tissue, depending on their fiber types. This tissue does express LPL, G3PDH and particularly the ob gene, a white adipose tissue-specific marker, and does not express the brown adipose tissue molecular marker UCP1 mRNA.

View Article and Find Full Text PDF

The expression of myogenic regulatory factors (MRFs), lactate dehydrogenase (LDH) and myosin heavy chains (MyHC), as markers of myogenesis, metabolism and contractility respectively, were investigated during differentiation of rabbit embryonic muscle cells in primary culture. Myf5, MyoD and myogenin mRNAs were abundantly expressed at day 1 of culture. The expression of Myf5 and MyoD mRNA transcripts decreased sharply as myoblasts fused and differentiated into myotubes, whilst myogenin mRNA was maintained throughout the duration of the culture.

View Article and Find Full Text PDF

Myosin heavy chains (hcs) are the major determinant in the speed of contraction of skeletal muscle, and various isoforms are differentially expressed depending on the functional activity of the muscle. Using the rapid amplification of cDNA ends (3' RACE) method, we have characterised the 3' end of the embryonic, perinatal, type 1, 2a, 2x, and 2b myosin hc genes in rabbit skeletal muscle and used them as probes in RNase protection assays to quantitatively monitor their expression in different type of skeletal muscles just before and after birth. SDS PAGE was used to study the changes in the expression level of their respective protein and to determine the relative abundance of each myosin hc isoform in the muscles studied.

View Article and Find Full Text PDF

We previously showed that satellite cells isolated from rabbit fast-twitch and slow-twitch muscles presented different behaviours in culture; cells from slow muscle differentiated more quickly and fused into more numerous myotubes than those from fast muscle. Moreover, only slow-muscle derived satellite cells expressed in vitro the slow type I myosin heavy chain isoform (MyHC). We wanted to investigate whether the properties of satellite cells originating from different muscles were under the influence of the adult fibre type on which they were located.

View Article and Find Full Text PDF

The insulin-like growth factor (IGF) system is actively involved in the control of proliferation and differentiation of several myogenic cell lines, and phenotypic differences between myoblasts are associated with modifications of the equilibrium of the components of the IGF system. To determine whether this observation is a physiologic feature that also concerns the phenotypes of ex vivo adult satellite myoblasts in primary cell culture, we investigated the IGF system in rabbit slow-twitch muscle-derived satellite myoblasts (SSM), which differ phenotypically from fast-twitch muscle-derived satellite myoblasts (FSM) by their proliferation and differentiation kinetics in vitro. The expression of IGF-I and IGF-II were similar in SSM and FSM as well as their concentrations measured in cell-conditioned media.

View Article and Find Full Text PDF

The expression of myosin heavy (MyHC) and light (MyLC) chain isoforms was analyzed after denervation and cross-reinnervation by a fast nerve of the slow-twitch Semimembranosus proprius (SMp) muscle, and after denervation and electrical stimulation at low frequency of the fast-twitch Semimembranous accessorius (SMa) muscle of the rabbit. The control SMp (100% type I fibers) expressed 100% type I MyHC and 100% slow-type (1S', 1S and 2S) MyLC isoforms. Five month denervation did not alter significantly the MyHC expression of the muscle, but induced the expression of a new type 1 MyLC corresponding most probably to an embryonic MyLC.

View Article and Find Full Text PDF

We investigated the myogenic properties of rabbit fast or slow muscle satellite cells during their differentiation in culture, with a particular attention to the expression of myosin heavy chain and myogenic regulatory factor genes. Satellite cells were isolated from Semimembranosus proprius (slow-twitch muscle; 100% type I fibres) and Semimembranosus accessorius (fast-twitch muscle; almost 100% type II fibres) muscles of 3-month-old rabbits. Satellite cells in culture possess different behaviours according to their origin.

View Article and Find Full Text PDF

We investigated the myogenic properties and the expression of acetylcholinesterase (AChE) in culture of satellite cells (SCs) isolated from slow and fast rabbit muscles. Slow SCs form myotubes more rapidly (day 9 vs day 11) than fast SCs, and differentiate further into striated and contractile fibers. AChE activity and mRNA expression are higher in SCs cultured from slow than from fast muscles, as also observed in the muscles themselves.

View Article and Find Full Text PDF