Publications by authors named "Bachem A"

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death.

View Article and Find Full Text PDF

Naïve CD8 T cells need to undergo a complex and coordinated differentiation program to gain the capacity to control virus infections. This not only involves the acquisition of effector functions, but also regulates the development of a subset of effector CD8 T cells into long-lived and protective memory cells. Microbiota-derived metabolites have recently gained interest for their influence on T cells, but much remains unclear about their role in CD8 T cell differentiation.

View Article and Find Full Text PDF

Whereas CD4 T cells conventionally mediate antitumor immunity by providing help to CD8 T cells, recent clinical studies have implied an important role for cytotoxic CD4 T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4 T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4 T cells with tumor debris-laden MHC II host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II melanoma cells alone could also promote CD4 T cell control.

View Article and Find Full Text PDF

Immunity to systemic Salmonella infection depends on multiple effector mechanisms. Lymphocyte-derived interferon gamma (IFN-γ) enhances cell-intrinsic bactericidal capabilities to antagonize the hijacking of phagocytes as replicative niches for Salmonella. Programmed cell death (PCD) provides another means through which phagocytes fight against intracellular Salmonella.

View Article and Find Full Text PDF

Antiviral CD8 T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-β (IFNα/β)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4 T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/β or CD40 alone.

View Article and Find Full Text PDF

Reinvigoration of exhausted CD8 T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection.

View Article and Find Full Text PDF

The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways.

View Article and Find Full Text PDF

Mitochondrial OXPHOS generates most of the energy required for cellular function. OXPHOS biogenesis requires the coordinated expression of the nuclear and mitochondrial genomes. This represents a unique challenge that highlights the importance of nuclear-mitochondrial genetic communication to cellular function.

View Article and Find Full Text PDF

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control.

View Article and Find Full Text PDF

Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8 T cell memory. Antigen-activated CD8 T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism.

View Article and Find Full Text PDF

Resolution of virus infections depends on the priming of virus-specific CD8 T cells by dendritic cells (DC). While this process requires major histocompatibility complex (MHC) class I-restricted antigen presentation by DC, the relative contribution to CD8 T cell priming by infected DC is less clear. We have addressed this question in the context of a peripheral infection with herpes simplex virus 1 (HSV).

View Article and Find Full Text PDF

Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm.

View Article and Find Full Text PDF

Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear.

View Article and Find Full Text PDF

DCs often require stimulation from CD4(+) T cells to propagate CD8(+) T cell responses, but precisely how T cell help optimizes the priming capacity of DCs and why this appears to differ between varying types of CD8(+) T cell immunity remains unclear. We show that CD8(+) T cell priming upon HSV-1 skin infection depended on DCs receiving stimulation from both IFN-α/β and CD4(+) T cells to provide IL-15. This was not an additive effect but resulted from CD4(+) T cells amplifying DC production of IL-15 in response to IFN-α/β.

View Article and Find Full Text PDF

Current subunit vaccines are incapable of inducing Ag-specific CD8(+) T cell cytotoxicity needed for the defense of certain infections and for therapy of neoplastic diseases. In experimental vaccines, cytotoxic responses can be elicited by targeting of Ag into cross-presenting dendritic cells (DC), but almost all available systems use target molecules also expressed on other cells and thus lack the desired specificity. In the present work, we induced CD8(+) T cell cytotoxicity by targeting of Ag to XCR1, a chemokine receptor exclusively expressed on murine and human cross-presenting DC.

View Article and Find Full Text PDF

In the past, lack of lineage markers confounded the classification of dendritic cells (DC) in the intestine and impeded a full understanding of their location and function. We have recently shown that the chemokine receptor XCR1 is a lineage marker for cross-presenting DC in the spleen. Now, we provide evidence that intestinal XCR1(+) DC largely, but not fully, overlap with CD103(+) CD11b(-) DC, the hypothesized correlate of "cross-presenting DC" in the intestine, and are selectively dependent in their development on the transcription factor Batf3.

View Article and Find Full Text PDF

Cross-presentation of antigen by dendritic cells (DCs) to CD8(+) T cells is a fundamentally important mechanism in the defense against pathogens and tumors. Due to the lack of an appropriate lineage marker, cross-presenting DCs in the mouse are provisionally classified as "Batf3-IRF-8-Id2-dependent DCs" or as "CD8(+) DCs" in the spleen, and as "CD103(+)CD11b(-) DCs" in the periphery. We have now generated a mAb to XCR1, a chemokine receptor which is specifically expressed on CD8(+) DCs and a subpopulation of double negative DCs in the spleen.

View Article and Find Full Text PDF

In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity.

View Article and Find Full Text PDF

Testicular germ cell tumours (TGCT) represent the most common malignancy in young males. We reported previously that two prototype members of the mitogen-activated protein kinase (MAPK) family, the MAPK ERK kinase (MEK) and extracellular signal-regulated kinase (ERK), are inactive in malignant testicular germ cells and become active after drug stimulation, leading to apoptosis of tumour cells. In this study, we asked whether the protein phosphatase PP2A, a known inhibitor of the MEK-ERK pathway, participates in the proliferation and/or apoptosis of primary TGCT (n = 48) as well as two TGCT cell lines (NTERA and NCCIT).

View Article and Find Full Text PDF