Understanding the relationship between heat wave occurrence and wildfire spread represents a key priority in global change studies due to the significant threats posed on natural ecosystems and society. Previous studies have not explored the spatial and temporal mechanism underlying the relationship between heat waves and wildfires occurrence, especially over large geographical regions. This study seeks to investigate such a relationship with a focus on 37 ecoregions within a Eurasia longitudinal gradient.
View Article and Find Full Text PDFRural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007-2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases.
View Article and Find Full Text PDFSardinia (Italy), the second largest island of the Mediterranean Sea, is a fire-prone land. Most Sardinian environments over time were shaped by fire, but some of them are too intrinsically fragile to withstand the currently increasing fire frequency. Calcareous pedoenvironments represent a significant part of Mediterranean areas, and require important efforts to prevent long-lasting degradation from fire.
View Article and Find Full Text PDFWildfire spread and behavior can be limited by fuel treatments, even if their effects can vary according to a number of factors including type, intensity, extension, and spatial arrangement. In this work, we simulated the response of key wildfire exposure metrics to variations in the percentage of treated area, treatment unit size, and spatial arrangement of fuel treatments under different wind intensities. The study was carried out in a fire-prone 625 km agro-pastoral area mostly covered by herbaceous fuels, and located in Northern Sardinia, Italy.
View Article and Find Full Text PDF