Aims: The objective was to validate the initial beam parameters of the Davao Doctors Hospital's 6 MV Elekta Synergy Platform linac, which performs to the specification of the commissioning data per our records using the gamma-index analysis toolkit integrated inside PRIMO software.
Materials And Methods: In PRIMO, a sequence of optimization processes is performed, in which the measured and simulated percent depth dose (PDD) and lateral beam profiles at various depths are compared, using the stringent gamma-index passing rate at 1%/1 mm criteria (GPR11). Using four fields of sizes 3 cm × 3 cm, 4 cm × 4 cm, 5 cm × 5 cm, and 10 cm × 10 cm, the dose is calculated on a water phantom measuring 16.
Radiat Oncol
January 2020
Background: In Monte Carlo simulations, the fine-tuning of linac beam parameters to produce a good match between simulated and measured dose profiles is a lengthy, time-consuming and resource-intensive process. The objective of this study is to utilize the results of the gamma-index analysis toolkit embedded inside the windows-based PRIMO software package to yield a truncated linac photon beam fine-tuning process.
Methods: Using PRIMO version 0.
Purpose: Sooner or later every medical physicist is involved with commissioning and beam modeling of a new linear accelerator (linac) and a new treatment planning system (TPS). In spite of all instructions and training offered by the vendors, at the time a new linac is being purchased and added to the present ones the outside help is not so complete. The physicist who has to perform the commissioning job may not even be the one who was trained for that.
View Article and Find Full Text PDF