Derivatives of the 4-fluorobenzyl dimethylpiperazine-indole class of p38alpha MAP kinase inhibitors are described. Biological evaluation of these compounds focused on maintaining activity while improving pharmacokinetic (PK) properties. Improved properties were observed for structures bearing substitutions on the benzylic methylene.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2010
The design and synthesis of a new class of p38alpha MAP kinase inhibitors based on 4-fluorobenzylpiperidine heterocyclic oxalyl amides are described. Many of these compounds showed low-nanomolar activities in p38alpha enzymatic and cell-based cytokine TNFalpha production inhibition assays. The optimal linkers between the piperidine and the oxalyl amide were found to be [6,5] fused ring heterocycles.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 10nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core of the inhibitors. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin-dependant kinase. Inhibitory activities against the enzyme ranged from 34nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 34nM to >20microM and were dependant upon both the nature of the aryl group and the hydrogen bond donating potential of the maleimide ring. Key interactions with the kinase ATP site and hinge region were found to be consistent with homology modeling predictions.
View Article and Find Full Text PDFNon-ATP competitive pyrimidine-based inhibitors of CaMKIIdelta were identified. Computational studies were enlisted to predict the probable mode of binding. The results of the computational studies led to the design of ATP competitive inhibitors with optimized hinge interactions.
View Article and Find Full Text PDFThe effects of small-molecule p38 inhibitors in numerous models of different disease states have been published, including those of SD-282, an indole-5-carboxamide inhibitor. The aim of the present study was to evaluate the pharmacological activity of SD-282 on cytokine production in vitro as well as in 2 in vivo models of inflammation in order to illuminate the role of this particular inhibitor in diverse disease states. The results presented here provide further characterization of SD-282 and provide a context in which to interpret the activity of this p38 inhibitor in models of arthritis, pain, myocardial injury, sepsis and asthma; all of which have an inflammatory component.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) and heat shock proteins (HSPs) are ubiquitous proteins that function within T cells in both normal and stress-related pathophysiological states, including type 1 diabetes. The nonobese diabetic (NOD) mouse spontaneously develops T cell-mediated autoimmune pancreatic beta cell destruction that is similar to type 1 diabetes in humans. Because p38 MAPKs have been shown to modulate T cell function, we studied the effects of a p38alpha MAPK-selective inhibitor, indole-5-carboxamide (SD-169), on the development and progression of type 1 diabetes in the NOD mouse.
View Article and Find Full Text PDFp38alpha Mitogen Activated Protein Kinase (MAP kinase) is an intracellular soluble serine threonine kinase. p38alpha kinase is activated in response to cellular stresses, growth factors and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). The central role of p38alpha activation in settings of both chronic and acute inflammation has led efforts to find inhibitors of this enzyme as possible therapies for diseases such as rheumatoid arthritis, where p38alpha activation is thought to play a causal role.
View Article and Find Full Text PDF