Publications by authors named "Babu Halan"

Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes.

View Article and Find Full Text PDF

Biocatalytic processes often encounter problems due to toxic reactants and products, which reduce biocatalyst viability. Thus, robust organisms capable of tolerating or adapting towards such compounds are of high importance. This study systematically investigated the physiological response of Pseudomonas taiwanensis VLB120∆C biofilms when exposed to n-butanol, one of the potential next generation biofuels as well as a toxic substance using microscopic and biochemical methods.

View Article and Find Full Text PDF

The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production.

View Article and Find Full Text PDF

Catalytic biofilms minimize reactant toxicity and maximize biocatalyst stability in selective transformations of chemicals to value-added products in continuous processes. The scaling up of such catalytic biofilm processes is challenging, due to fluidic and biological parameters affording a special reactor design affecting process performance. A solid support membrane-aerated biofilm reactor was optimized and scaled-up to yield gram amounts of (S)-styrene oxide, a toxic and instable high value chemical synthon.

View Article and Find Full Text PDF

Biofilm reactors are often mass transfer limited due to excessive biofilm growth, impeding reactor performance. Fluidic conditions play a key role for biofilm structural development and subsequently for overall reactor performance. Continuous interfacial forces generated by aqueous-air segmented flow are controlling biofilm structure and diminish mass transfer limitations in biofilm microreactors.

View Article and Find Full Text PDF

Biofilms are resilient to a wide variety of environmental stresses. This inherited robustness has been exploited mainly for bioremediation. With a better understanding of their physiology, the application of these living catalysts has been extended to the production of bulk and fine chemicals as well as towards biofuels, biohydrogen, and electricity production in microbial fuel cells.

View Article and Find Full Text PDF

Biofilms are ubiquitous surface-associated microbial communities embedded in an extracellular polymeric (EPS) matrix, which gives the biofilm structural integrity and strength. It is often reported that biofilm-grown cells exhibit enhanced tolerance toward adverse environmental stress conditions, and thus there has been a growing interest in recent years to use biofilms for biotechnological applications. We present a time- and locus-resolved, noninvasive, quantitative approach to study biofilm development and its response to the toxic solvent styrene.

View Article and Find Full Text PDF

A new solid support membrane aerated biofilm reactor was designed for the synthesis of enantiopure (S)-styrene oxide utilizing Pseudomonas sp. strain VLB120DeltaC growing in a biofilm as biocatalyst. In analogy to traditional packed bed systems, maximizing the volumetric oxygen mass transfer capability (k(L)a) was identified as the most critical issue enabling a consistent productivity, as this parameter was shown to directly influence biofilm growth and biotransformation performance.

View Article and Find Full Text PDF