Landfills are struggling to accommodate the increasing amounts of carbon soot ash waste from oil refineries. Due to extensive industrial productions, large quantities of lead ions are released into the environment, which not only pollutes the environment but also affects flora and fauna. In this work, these urgent environmental issues will be tackled by studying the use of modified carbon soot ash for specific heavy metal adsorption.
View Article and Find Full Text PDFAs compared to alkali-activated geopolymers with phosphoric acid which may be used in high concentrations resulting in disposal concerns, acid-based geopolymers may have superior properties. A novel green method of converting waste ash to a geopolymer for use in adsorption applications such as water treatment is presented here. We use methanesulfonic acid, a green chemical with high acid strength and biodegradability to form geopolymers from coal and wood fly ashes.
View Article and Find Full Text PDFIntelligent nanomedicines integrated with stimuli-responsive components enable on-demand customizable treatment options which would improve therapeutic outcome and reduce systemic toxicity. In this work, we explore the synergistic therapeutic potential of photodynamic therapy and immunometabolic modulation to achieve tumour regression and to trigger an adaptive immunity to prevent tumour recurrence. The therapeutic potential of the fabricated Bioengineered Immunomodulatory Organelle targeted Nanozymes (BIONs) was tested on 3D printed mini-brains which could effectively recapitulate the biologically relevant interactions between glioblastoma cells and macrophages.
View Article and Find Full Text PDFIncineration is the main technology used for the management of municipal solid waste, in parallel to various recycling programs. However, incineration should not be considered as the final step for waste management as the ash still needs to be treated and disposed properly. In this work, an innovative accelerated carbonation of incineration bottom ash (IBA) using simulated biogas composition from anaerobic digestion processes (a mixture of CH and CO) has been applied to lower the leaching of heavy metals from the carbonated IBA and its associated toxicity.
View Article and Find Full Text PDFIncinerated sewage sludge ash is tested here as a cement and aggregate substitute in mortar blocks. It can be used at various percentages to reduce the overall cost of production and promote ash recycling. The compressive strength of the cast blocks was tested at 28 days to determine the optimal combination of ball milled ash (replacing cement) and sewage sludge ash (replacing sand).
View Article and Find Full Text PDFSewage sludge bottom ash (SSBA) from the incineration plant used for the production of construction materials possibly possess heavy metals which might cause a negative impact on human health. Considering biosafety, we investigated the toxicity effects of 0.5-2 mm (aggregate substitute) and < 0.
View Article and Find Full Text PDFThe remediation of oil spills and treatment of oily wastewater remains challenging to cope with nowadays. This has caused a surge in demand on adsorbent materials with multi-functionalities to effectively separate oils and nonpolar solvents from water. A superhydrophobic composite aerogel prepared from industrial waste-derived leached carbon black waste (LCBW) and polyvinyl alcohol (PVA) was developed in this work via conventional freeze-casting followed by surface coating.
View Article and Find Full Text PDFBiochar, produced as a by-product of pyrolysis/gasification of waste biomass, shows great potential to reduce the environment impact, address the climate change issue, and establish a circular economy model. Despite the promising outlook, the research on the benefits of biochar remains highly debated. This has been attributed to the heterogeneity of biochar itself, with its inherent physical, chemical and biological properties highly influenced by production variables such as feedstock types and treating conditions.
View Article and Find Full Text PDFSewage sludge bottom ash, which is the major fraction obtained from the incineration of sewage sludge was treated with various organic and inorganic acids for heavy metal removal, along with a comparative phosphate treatment for heavy metal fixation. Malonic acid, an organic acid, was found to remove heavy metals better as compared to nitric acid, a strong inorganic acid. The acid treated samples were further examined for heavy metal leaching, followed by marine toxicity/abnormality testing of the leachates, where acid treated and phosphate treated ash leachate displayed higher (with malonic acid proving to be most toxic) and similar toxicity profiles as compared to raw ash leachate respectively.
View Article and Find Full Text PDFAlkaline activated materials such as geopolymers and cementitious materials derived from pozzolanic reactions offer several advantages over the currently widely used Portland cement, especially in terms of environmental sustainability and physiochemical properties. However due to the need of an alkaline activator, such as NaOH or KOH, which result in high production cost and requires skilled personnel, they have not been deeply explored and put to use. Here in this study, wood fly ash, a by product of wood combustion is used as an alternative source of alkaline activator for producing such alkaline activated materials along with coal fly ash, where the resulting geopolymer-cementitious hybrid (GCH) was characterized physico-chemically through electron microscopy, BET, FTIR, XRF & XRD.
View Article and Find Full Text PDF