Publications by authors named "Babu Azariah"

The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population.

View Article and Find Full Text PDF

Rhizobacteria associated with cultivated crops are known to stimulate plant growth through various indirect or direct mechanisms. In recent years, the host list of plant growth promotion/promoting rhizobacteria has expanded to include bean, barley, cotton, maize, rice, vegetables, peanut, rice, wheat, and several plantation crops. However, interaction of rhizobacteria with tea plants of organic and conventional tea gardens is poorly understood.

View Article and Find Full Text PDF

The scale insects reduce plant photosynthetic ability by sucking sap from leaves and causing significant damage to the tea crop in most tea-producing countries. They suck the sap from stems and tea leaves, which not only prevents further growth but also reduces the nutritional quality of the leaves by promoting the growth of sooty molds. However, due to the widespread use of organosynthetic pesticides in recent decades, most insect pests have developed high levels of pesticide resistance, reducing the effectiveness of insecticide application.

View Article and Find Full Text PDF

Harnessing the potential yields of evergreen perennial crops like tea ( L.) essentially requires the application of optimum doses of nutrients based on the soil test reports. In the present study, the soil pH, organic carbon (OC), available potassium as KO (AK), and available sulphur (AS) of 7300 soil samples from 115 tea estates spread over the Dooars ranging from 88°52'E to 89°86'E longitude and 26°45'N to 27°00'N latitude of West Bengal, India have been documented.

View Article and Find Full Text PDF

Gray blight, a fungal disease caused by Pestalotiopsis-like species, is a widespread disease affecting tea crop (Camellia sinensis (L.) Kuntze) in many tea-growing countries, including India, resulting in huge losses in tea production. In India, several studies have been conducted to understand the fungal diseases of tea crop, but gray blight has not been well described in major tea growing areas such as in North Bengal, based on its geographic distribution, molecular analysis, or pathogenicity, and even fungicide resistance.

View Article and Find Full Text PDF

Tea is a natural beverage made from the tender leaves of the tea plant ( Kuntze). Being of a perennial and monoculture nature in terms of its cultivation system, it provides a stable micro-climate for various insect pests, which cause substantial loss of crop. With the escalating cost of insect pest management and increasing concern about the adverse effects of the pesticide residues in manufactured tea, there is an urgent need to explore other avenues for pest management strategies.

View Article and Find Full Text PDF

Tea ( [L.] O. Kuntze) is a plantation crop, grown commercially in Asia, Africa, and South America.

View Article and Find Full Text PDF

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%.

View Article and Find Full Text PDF

Red spider mite (RSM), Oligonychus coffeae (Nietner) (Acarina: Tetranychidae), has gained special attention in view of their widespread occurrence as a pest on tea [Camellia sinensis L. (O. Kuntze)].

View Article and Find Full Text PDF

India is the second largest producer of black tea in the world. The biggest challenge for tea growers of India nowadays is to combat pests and diseases. Tea crop in India is infested by not less than 720 insect and mite species.

View Article and Find Full Text PDF

Functional and numerical responses of the predatory mite, Neoseiulus longispinosus (Evans) (Acari: Phytoseiidae) to the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae), infesting tea were determined in a laboratory on leaf discs. Prey consumption increased with increases in temperature and prey density. Handling time decreased and successful attack rate increased with increased temperature.

View Article and Find Full Text PDF

Green lacewing, Mallada desjardinsi Navas, is an important predator of red spider mite, Oligonychus coffeae infesting tea. Life history, life table and efficacy of M. desjardinsi were determined using red spider mite as prey under laboratory conditions.

View Article and Find Full Text PDF

Life table and predation of the predatory mite Neoseiulus longispinosus (Evans) on the red spider mite (RSM), Oligonychus coffeae (Nietner), a major pest of tea in India, were studied in the laboratory. Developmental time from egg to adult varied from 4 to 14 days at 30 to 15 °C, respectively; at 35 °C no larva survived. Survival of immature stages was more than 94 % at all temperatures.

View Article and Find Full Text PDF