Publications by authors named "Babosha V"

The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1.

View Article and Find Full Text PDF

Background: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries.

View Article and Find Full Text PDF

In Drosophila, a large group of actively transcribed genes is located in pericentromeric heterochromatin. It is assumed that heterochromatic proteins recruit transcription factors to gene promoters. Two proteins, Ouib and Nom, were previously shown to bind to the promoters of the heterochromatic genes nvd and spok.

View Article and Find Full Text PDF

The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear.

View Article and Find Full Text PDF

CP190 is a co-factor in many architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo.

View Article and Find Full Text PDF

Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize.

View Article and Find Full Text PDF

Proteins MSL1 and MSL2 form the core of the Drosophila dosage compensation complex, which specifically binds to the X chromosome of males. Phosphorylation of certain amino acid residues was previously shown to regulate MSL1 activity. In the present work, transgenic lines of Drosophila expressing mutant variants of the MSL1 protein were obtained, in which amino acids undergoing phosphorylation were replaced.

View Article and Find Full Text PDF

The authors have analysed the results of the treatment of 325 patients with injuries of the pelvis associated with cerebrocranial trauma. It has been determined that the severity of the condition and the occurrence of shock depended not only on the character of the pelvis injuries, but also on the severity of the brain injuries. The investigation of the circulating blood volume in 92 victims (pelvis injuries were associated with light brain injuries in 59 cases and with severe brain injuries in 33 cases) has demonstrated that severe cerebrocranial trauma associated with similar injuries of the pelvis influences the circulating blood volume deficit.

View Article and Find Full Text PDF

A mathematical system of equations for the determination of optimum terms of performing operations in patients with traumas of different localizations has been developed. The system includes parameters which show the severity of the victim's condition and efficiency of conservative therapy. Solution of the equations also facilitates prognosing the outcomes of trauma disease, its duration in the presence of shock, optimum volume and composition of the infusion therapy.

View Article and Find Full Text PDF