Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression.
View Article and Find Full Text PDFDespite significant steps in our understanding of Alzheimer's disease (AD), many of the molecular processes underlying its pathogenesis remain largely unknown. Here, we focus on the role of non-coding RNAs produced by small interspersed nuclear elements (SINEs). RNAs from SINE B2 repeats in mouse and SINE Alu repeats in humans, long regarded as "junk" DNA, control gene expression by binding RNA polymerase II and suppressing transcription.
View Article and Find Full Text PDFThe functional importance of many non-coding RNAs (ncRNAs) generated by repetitive elements and their connection with pathologic processes remains elusive. B2 RNAs, a class of ncRNAs of the B2 family of SINE repeats, mediate through their processing the transcriptional activation of various genes in response to stress. Here, we show that this response is dysfunctional during amyloid beta toxicity and pathology in the mouse hippocampus due to increased levels of B2 RNA processing, leading to constitutively elevated B2 RNA target gene expression and high levels.
View Article and Find Full Text PDF