Publications by authors named "Babi Nallamilli"

Background: Pathogenic variants in the gene are associated with dystrophinopathy including Duchenne and Becker muscular dystrophy (DMD/BMD). Targeted gene, gene panels, exomes and genome sequencing have advanced genetic diagnostics, yet some cases remain elusive.

Methods: We performed total RNA sequencing (RNAseq) on muscle biopsy from 13 male patients with a clinical diagnosis of DMD/BMD.

View Article and Find Full Text PDF

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis.

View Article and Find Full Text PDF

Background And Objectives: Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common muscular dystrophy in the general population and is characterized by progressive and often asymmetric muscle weakness of the face, upper extremities, arms, lower leg, and hip girdle. In FSHD type 1, contraction of the number of D4Z4 repeats to 1-10 on the chromosome 4-permissive allele (4qA) results in abnormal epigenetic derepression of the gene in skeletal muscle. In FSHD type 2, epigenetic derepression of the gene on the permissive allele (4qA) with normal-sized D4Z4 repeats (mostly 8-20) is caused by heterozygous pathogenic variants in chromatin modifier genes such as , , or .

View Article and Find Full Text PDF
Article Synopsis
  • Genome sequencing (GS) is a powerful method for identifying various genetic variants, but its full clinical effectiveness is still being assessed.
  • An evaluation of 2100 clinical GS cases showed an overall diagnostic yield of 28%, with a yield of 26% when GS was used as the first test.
  • GS was particularly beneficial for patients who had previously received non-diagnostic tests, leading to diagnoses in 27% of those cases, suggesting that GS could be the preferred first-tier genetic test to expedite diagnosis.
View Article and Find Full Text PDF

Objective: Clinical and genetic heterogeneities make diagnosis of limb-girdle muscular dystrophy (LGMD) and other overlapping disorders of muscle weakness complicated and expensive. We aimed to develop a comprehensive next generation sequence-based multi-gene panel ("The Lantern Focused Neuromuscular Panel") to detect both sequence variants and copy number variants in one assay.

Methods: Patients with clinical diagnosis of LGMD or other overlapping muscular dystrophies in the United States were tested by PerkinElmer Genomics in 2018-2021 via "The Lantern Project," a sponsored diagnostic testing program.

View Article and Find Full Text PDF

Importance: Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored.

Objective: To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions.

Design, Setting, And Participants: This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022.

View Article and Find Full Text PDF

The Lantern Project is an ongoing complimentary diagnostic program for patients in the United States sponsored by Sanofi and implemented by PerkinElmer Genomics. It combines specific enzymatic, biomarker, and genetic testing to facilitate rapid, accurate laboratory diagnosis of Pompe disease and several other lysosomal storage diseases, and a multigene next-generation sequencing panel including Pompe disease, LGMD, and other neuromuscular disorders. This article reports data for Pompe disease collected from October 2018 through December 2021, including acid α-glucosidase (GAA) enzyme assay and GAA sequencing (standard or expedited for positive newborn screening [NBS] to rule out infantile-onset Pompe disease [IOPD]) and the Focused Neuromuscular Panel, which includes GAA.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by pathogenic variants in the dystrophin gene (DMD; locus Xp21.2). The variant spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively.

View Article and Find Full Text PDF

Molecular diagnosis for Duchenne and Becker muscular dystrophies (DMD/BMD) involves a two-tiered approach for detection of deletions/duplications using MLPA or array CGH, followed by sequencing of coding and flanking intronic regions to detect sequence variants, which is time-consuming and expensive. We have developed a comprehensive next-generation sequencing (NGS)-based single-step assay to sequence the entire 2.2 Mb of the DMD gene to detect all copy number and sequence variants in both index males and carrier females.

View Article and Find Full Text PDF

Inherited myopathies comprise more than 200 different individually rare disease-subtypes, but when combined together they have a high prevalence of 1 in 6,000 individuals across the world. Our goal was to determine for the first time the clinical- and gene-variant spectrum of genetic myopathies in a substantial cohort study of the Indian subcontinent. In this cohort study, we performed the first large clinical exome sequencing (ES) study with phenotype correlation on 207 clinically well-characterized inherited myopathy-suspected patients from the Indian subcontinent with diverse ethnicities.

View Article and Find Full Text PDF

Objective: Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions.

View Article and Find Full Text PDF
Article Synopsis
  • GNE gene mutations lead to hereditary inclusion-body myopathy (HIBM), characterized by autosomal-recessive juvenile-onset myopathy.
  • The study presents a family case where a patient exhibited atypical HIBM symptoms, prompting the use of advanced genetic testing methods like RNA-seq for accurate diagnosis and understanding of the disease.
  • A novel pathogenic deletion and a common genetic variant were identified, along with findings suggesting α-dystroglycan hypoglycosylation, which indicates HIBM may function as a "dystroglycanopathy."
View Article and Find Full Text PDF

Objective: Limb-girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal-muscle weakness with >30 genes associated with different subtypes. The clinical-genetic overlap among subtypes and with other NMDs complicate disease-subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical-trial recruitment. Currently seven LGMD clinical trials are active but still no gene-therapy-related treatment is available.

View Article and Find Full Text PDF

Background: Limb-girdle muscular dystrophy (LGMD) is the most common adult-onset class of muscular dystrophies in India, but a majority of suspected LGMDs in India remain unclassified to the genetic subtype level. The next-generation sequencing (NGS)-based approaches have allowed molecular characterization and subtype diagnosis in a majority of these patients in India.

Materials And Methods: (I) To select probable dysferlinopathy (LGMD2B) cases from other LGMD subtypes using two screening methods (i) to determine the status of protein expression in blood (peripheral blood mononuclear cell) by monocyte assay (ii) using a predictive algorithm called automated LGMD diagnostic assistant (ALDA) to obtain possible LGMD subtypes based on clinical symptoms.

View Article and Find Full Text PDF

Hereditary nonpolyposis colorectal cancer (HNPCC), also called Lynch syndrome, is an autosomal dominant cancer syndrome that confers an elevated risk of early-onset colorectal cancer (CRC) and increased lifetime risk for other cancers of the endometrium, stomach, small intestine, hepatobiliary system, kidney, ureter, and ovary. Lynch syndrome accounts for up to 3% of all CRC, making it the most common hereditary colorectal cancer syndrome. Germline mutations in methyl-directed mismatch repair (MMR) genes give rise to microsatellite instability (MSI) in tumor DNA.

View Article and Find Full Text PDF

The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa.

View Article and Find Full Text PDF

Hereditary forms of colorectal cancer (CRC) account for up to 5% of total cases. Familial adenomatous polyposis (FAP) is an autosomal dominant condition affecting nearly 1 in 5000 people and accounts for only about 1% of all CRCs. It is characterized by the progressive development of hundreds to thousands of adenomatous colon polyps.

View Article and Find Full Text PDF

Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far.

View Article and Find Full Text PDF

Background: Rice is a major crop worldwide. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice.

View Article and Find Full Text PDF

Objective: Mutations in dysferlin (DYSF), a Ca(2+)-sensitive ferlin family protein important for membrane repair, vesicle trafficking, and T-tubule function, cause Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal myopathy. More than 330 pathogenic DYSF mutations have been identified within exons or near exon-intron junctions. In ~17% of patients who lack normal DYSF, only a single disease-causing mutation has been identified.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by mutations in the dystrophin gene (DMD; locus Xp21.2). The mutation spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively.

View Article and Find Full Text PDF

Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.

View Article and Find Full Text PDF