Spatial separation of metabolic stages in anaerobic digesters can increase the methane content of biogas, as realized in a tube anaerobic baffled reactor. Here, we investigated the performance and microbial community dynamics of a laboratory-scale mesophilic anaerobic baffled reactor with four compartments treating an artificial substrate. Due to the activity of fermentative bacteria, organic acids mostly accumulated in the initial compartments.
View Article and Find Full Text PDFAnaerobic digestion (AD) is a complex multi-stage process relying on the activity of highly diverse microbial communities including hydrolytic, acidogenic and syntrophic acetogenic bacteria as well as methanogenic archaea. The lower diversity of methanogenic archaea compared to the bacterial groups involved in AD and the corresponding lack of functional redundancy cause a stronger susceptibility of methanogenesis to unfavorable process conditions such as trace element (TE) deprivation, thus controlling the stability of the overall process. Here, we investigated the effects of a slowly increasing TE deficit on the methanogenic community function in a semi-continuous biogas process.
View Article and Find Full Text PDFTrace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood.
View Article and Find Full Text PDF