Publications by authors named "Babak Taheri"

Mycoremediation uses mushroom forming fungi for remediation of sites contaminated with biotic and abiotic contaminants. The root-like hyphae of many fungi, the mycelia, have been used to remediate soil and water. In this study mushroom mycelia biofilters were evaluated for remediation efficacy of wetland water polluted with crow feces containing antibiotic resistant (AMR) bacteria.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) are increasingly important in a range of applications, including top cells in tandem devices and see-through photovoltaics. Transparent conductive oxides (TCOs) are commonly used as transparent electrodes, with sputtering being the preferred deposition method. However, this process can damage exposed layers, affecting the electrical performance of the devices.

View Article and Find Full Text PDF

Electron transport layers (ETLs) play a fundamental role in perovskite solar cells (PSCs) through charge extraction. Here, we developed flexible PSCs on 12 different kinds of ETLs based on SnO. We show that ETLs need to be specifically developed for plastic substrates in order to attain 15% efficient flexible cells.

View Article and Find Full Text PDF

Most laboratories employ spin coating with application of antisolvent to achieve high efficiency in perovskite solar cells. However, this method wastes a lot of material and is not industrially usable. Conversely, large area coating techniques such as blade and slot-die require high precision engineering both for deposition of ink and for gas or for electromagnetic drying procedures that replace, out of necessity, anti-solvent engineering.

View Article and Find Full Text PDF

Flexible perovskite solar cells (FPSCs) are prime candidates for applications requiring a highly efficient, low-cost, lightweight, thin, and even foldable power source. Despite record efficiencies of lab-scale flexible devices (19.5% on a 0.

View Article and Find Full Text PDF

Perovskite solar modules (PSMs) have been attracting the photovoltaic market, owing to low manufacturing costs and process versatility. The employment of flexible substrates gives the chance to explore new applications and further increase the fabrication throughput. However, the present state-of-the-art of flexible perovskite solar modules (FPSMs) does not show any data on light-soaking stability, revealing that the scientific community is still far from the potential marketing of the product.

View Article and Find Full Text PDF

Long-term stability of perovskite solar cells (PSCs) is one of the main issues to be solved for forthcoming commercialization of this technology. In this work, thermosetting polyurethane (PU)-based resins are proposed as effective encapsulants for perovskite solar cells to prevent degradation caused by both moisture and oxygen. Application consists of drop-casting the precursor mixture directly over the devices followed by polymerization, avoiding the use of other adhesives.

View Article and Find Full Text PDF

Information on the dissemination of antibiotic resistance mechanisms in the environment as well as wild life is needed in North America. A constructed wetland (where ∼15,000 American crows roost) was sampled on the University of Washington Bothell Campus for the presence of antibiotic resistant (ARE). Crow droppings from individual birds and grab samples of water were collected in 2014-2015.

View Article and Find Full Text PDF

Interface engineering of organic-inorganic halide perovskite solar cells (PSCs) plays a pivotal role in achieving high power conversion efficiency (PCE). In fact, the perovskite photoactive layer needs to work synergistically with the other functional components of the cell, such as charge transporting/active buffer layers and electrodes. In this context, graphene and related two-dimensional materials (GRMs) are promising candidates to tune "on demand" the interface properties of PSCs.

View Article and Find Full Text PDF

Interface engineering is performed by the addition of graphene and related 2 D materials (GRMs) into perovskite solar cells (PSCs), leading to improvements in the power conversion efficiency (PCE). By doping the mesoporous TiO layer with graphene flakes (mTiO +G), produced by liquid-phase exfoliation of pristine graphite, and by inserting graphene oxide (GO) as an interlayer between the perovskite and hole-transport layers, using a two-step deposition procedure in air, we achieved a PCE of 18.2 %.

View Article and Find Full Text PDF