Burn wounds are the most destructive and complicated type of skin or underlying soft tissue injury that are exacerbated by a prolonged inflammatory response. Several cell-based therapeutic systems through the culturing of potent stem cells on modified scaffolds have been developed to direct the burn healing challenges. In this context, a new regenerative platform based on boron (B) enriched-acellular sheep small intestine submucosa (AOSIS) scaffold was designed and used as a carrier for mesenchymal stem cells derived from Wharton's jelly (WJMSCs) aiming to promote the tissue healing in burn-induced rat models.
View Article and Find Full Text PDFOne of the newest advances in 3D printing is the printing process of bio-scaffolds. The 3D printing of true materials for cartilage repairs accelerates cell growth and proliferation. In this study, a novel biomaterial was developed for the 3D printing of cartilage scaffolds composed of alginate, thymoquinone and halloysite nanotube.
View Article and Find Full Text PDFThe growing usage of printed bio scaffolds in the field of regenerative medicine has made this field very important in biomedical engineering. In this regard, three-dimensional printing (3D) technique needs bio-materials with higher mechanical and biological performance. The biomaterials with high mechanical performance beside its bio compatibility are limited.
View Article and Find Full Text PDFCartilage shows neither repairs nor regenerative properties after trauma or gradual wear and causes severe pain due to bones rubbing. Bioprinting of tissue-engineered artificial cartilage is one of the most fast-growing sciences in this area that can help millions of people against this disease. Bioprinting of proper bioscaffolds for cartilage repair was the main goal of this study.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2018
Use of artificial cartilage due to its poor regenerative characteristics is a challenging issue in the field of tissue engineering. In this regard, three-dimensional printing (3D) technique because of its perfect structural control is one of the best methods for producing biological scaffolds. Proper biomaterials for cartilage repairs with good mechanical and biological properties and the high ability for 3D printing are limited.
View Article and Find Full Text PDF