Publications by authors named "Babak Mehrjou"

Objective: Emerging evidence suggests long noncoding RNA H19 is associated with osteoarthritis (OA) pathology. However, how H19 contributes to OA has not been reported. This study aims to investigate the biologic function of H19 in OA subchondral bone remodeling and OA progression.

View Article and Find Full Text PDF

The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance.

View Article and Find Full Text PDF

Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood.

View Article and Find Full Text PDF

Emergence of antibiotic-resistance pathogens has caused serious health issues and if the current trend is to continue, treatment of the infection will become complicated and even unsuccessful due to new antimicrobial resistance (AMR). Therefore, there is a global drive to identify new methods to treat infection and develop better antibacterial materials and therapy. Although new and more potent antibiotics have aided the fight against microbes, they only offer a temporary solution because future bacteria strains may become resistant to these antibiotics and drugs.

View Article and Find Full Text PDF

We report a chitosan-based nanocomposite thermogel with superior shear modulus resembling that of cartilage and dual pro-chondrogenic and anti-inflammatory functions. Two therapeutic agents, kartogenin (KGN) and diclofenac sodium (DS), are employed to promote chondrogenesis of stem cells and suppress inflammation, respectively. To extend the release time in a controlled manner, KGN is encapsulated in the uniform-sized starch microspheres and DS is loaded into the halloysite nanotubes.

View Article and Find Full Text PDF

Much effort has made to lessen the cytotoxicity and enhance the corrosion resistance of biodegradable magnesium alloys, for example, by depositing multilayered polymeric coatings containing hydroxyapatite. In this work, a hierarchical structure composed of ciprofloxacin (Cip)-loaded on polyacrylic acid (PAA) and poly (ethyleneimine) (PEI) as biocompatible polymeric multilayers and calcium phosphate coating as the top layer is formed by the sol-gel method on the AZ91 Mg alloy with an intermediate layer formed by nitrogen plasma immersion ion implantation. The thicknesses of the multilayered coating and nitrided layer (Mg N ) are 10 μm and 140 nm, respectively.

View Article and Find Full Text PDF

A tantalum/tantalum nitride (Ta/TaN) multilayered coating is deposited on plasma-nitridedAZ91 Mg alloy. The top TaN layer undergoes O+ Ar plasma etching to improve the antibacterial properties and Mg plasma immersion ion implantation (MgPIII) is performed to enhance the biocompatibility and wound healing capability. A uniform, compact, homogeneous, and columnar nanostructured MgPIII and plasma-etched TaN layer with a cluster size of about 17 nm, surface roughness of 0.

View Article and Find Full Text PDF

The endothelial glycocalyx forms the inner-most lining of human microvasculature. It ensures the physiological function of blood vessels and plays a crucial role in the occurrence and progression of microvascular diseases. The present communication aims to highlight the usefulness of high-resolution imaging of lectin ) stained endothelial glycocalyx in 3-dimensional microfluidic cell cultures.

View Article and Find Full Text PDF

Multi-functional hierarchical coatings are deposited on the nitrided NiTi alloy. The nitrided layer is first deposited by nitrogen plasma immersion ion implantation and a middle layer containing porous hydroxyapatite and ciprofloxacin (Cip) is produced before the top calcium phosphate coating is deposited by the sol-gel method. The thicknesses of the coating and nitrided intermediate layer are about 1.

View Article and Find Full Text PDF

A platform with both bacteria killing and sensing capabilities is crucial for monitoring the entire bacteria-related process on biomaterials and biomedical devices. Electron transfer (ET) between the bacteria and a Au-loaded semiconductor (ZnO) is observed to be the primary factor for effective bacteria sensing and fast bacteria killing. The electrons produce a saturation current that varies linearly with the bacteria number, semi-logarithmically, with R of 0.

View Article and Find Full Text PDF

Because of unique properties such as the lightweight, natural biodegradability, and biocompatibility, magnesium alloys are promising in biomedical implants. However, inadequate corrosion resistance in the physiological environment remains a technical hurdle and application of coatings is a viable means to overcome the deficiency. Also, the antibacterial properties are very important in order to mitigate post-implantation complications arising from bacterial infection.

View Article and Find Full Text PDF

Articular cartilage has limited regeneration capacity because of its acellular and avascular nature. Although tissue engineering has been shown to be life-saving, reforming cartilage zones required by the appropriate tissue functions are challenging. Herein, the need is addressed by designing and producing a nano-engineered structure mimicking the superficial zone (SZ) of articular cartilage.

View Article and Find Full Text PDF

In bone implants, antibacterial biomaterials with nonleaching surfaces are superior to ones based on abrupt release because systemic side effects arising from the latter can be avoided. In this work, a nonleaching antibacterial concept is demonstrated by fabricating 2D nanoflakes in situ on magnesium (Mg). Different from the conventional antibacterial mechanisms that depend on Mg release and pH increase, the nanoflakes exert mechanical tension onto the bacteria membranes to destroy microorganisms on contact and produce intracellular stress via physical interactions, which is also revealed by computational simulations.

View Article and Find Full Text PDF

Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films.

View Article and Find Full Text PDF