In this study, the power of machine learning was harnessed to probe the link between molecular structures of peptide-based hydrogels and their viscoplastic properties. The selection of compounds was attempted in accordance with the prescribed full list of peptide-based materials exhibiting hydrogel functionality in the literature. In this pursuit, a complete set of molecular descriptors and fingerprints was considered - accounting for an entry of size 17,968 for each peptide-based structure analyzed.
View Article and Find Full Text PDFPolymer flooding is one of the widely used enhanced oil recovery (EOR) methods. However, tuning polymer properties to achieve improved performance in porous mineral rocks of diverse oil reservoirs remains one of the challenges of EOR processes. Here, we use molecular dynamics (MD) simulations to examine decane/water mixtures with surfactant additives in calcite and kaolinite mineral nanopores and characterize surfactant properties associated with increased fluid mobility and improved wettability in planar and constricted nanopore geometries.
View Article and Find Full Text PDFWe employ the grand canonical Monte Carlo simulation technique to investigate the influence of charged nanoparticles (macro-ions) on the force between colloidal objects. Specifically, the structure and osmotic pressure of a system of screened Coulomb (Yukawa) particles confined between charged planar walls are simulated. We observe osmotic pressure to oscillate with wall separation and these oscillations to correspond to changes in the number of nanoparticle layers present in the slit pore.
View Article and Find Full Text PDF