The referenced article [Opt. Lett.43, 4615 (2018)OPLEDP0146-959210.
View Article and Find Full Text PDFMiniaturized magnetic field sensors are increasingly used in various applications, such as geophysical exploration for minerals and oil, volcanology, earthquake studies, and biomedical imaging. Existing magnetometers lack either the spatial or the temporal resolution or are restricted to costly shielded labs and cannot operate in an unshielded environment. Increasing spatio-temporal resolution would allow for real-time measurements of magnetic fluctuations with high resolution.
View Article and Find Full Text PDFUsing a phoropter to measure the refractive error is one of the most commonly used methods by ophthalmologists and optometrists. Here, we demonstrate design and fabrication of a portable automatic phoropter with no need for patient's feedback. The system is based on three tunable-focus fluidic lenses and thin-film holographic optical elements to perform automatic refractive error measurement and provide a diagnostic prescription without supervision.
View Article and Find Full Text PDFWe present the design, construction, and characterization of a multiphoton microscope that uses reflective elements for beam shaping and steering. This compact all reflective design removes the adverse effects of dispersion on laser pulse broadening as well as chromatic aberration in the focusing of broadband and multicolored laser sources. The design of this system is discussed in detail, including aberrations analysis via ray-tracing simulation and opto-mechanical design.
View Article and Find Full Text PDFGrain boundaries have a major effect on the physical properties of two-dimensional layered materials. Therefore, it is important to develop simple, fast and sensitive characterization methods to visualize grain boundaries. Conventional Raman and photoluminescence methods have been used for detecting grain boundaries; however, these techniques are better suited for detection of grain boundaries with a large crystal axis rotation between neighbouring grains.
View Article and Find Full Text PDFBlack phosphorus (BP) is a layered semiconductor that recently has been the subject of intense research due to its novel electrical and optical properties, which compare favorably to those of graphene and the transition metal dichalcogenides. In particular, BP has a direct bandgap that is thickness-dependent and highly anisotropic, making BP an interesting material for nanoscale optical and optoelectronic applications. Here, we present a study of the anisotropic third-harmonic generation (THG) in exfoliated BP using a fast scanning multiphoton characterization method.
View Article and Find Full Text PDFThe use of receptor-targeted lipid microbubbles imaged by ultrasound is an innovative method of detecting and localizing disease. However, since ultrasound requires a medium between the transducer and the object being imaged, it is impractical to apply to an exposed surface in a surgical setting where sterile fields need be maintained and ultrasound gel may cause the bubbles to collapse. Multiphoton microscopy (MPM) is an emerging tool for accurate, label-free imaging of tissues and cells with high resolution and contrast.
View Article and Find Full Text PDFBy using scanning multiphoton microscopy we compare the nonlinear optical properties of the directly deposited and transferred to the dielectric substrate graphene. The direct deposition of graphene on oxidized silicon wafer was done by utilizing sacrificial copper catalyst film. We demonstrate that the directly deposited graphene and bi-layered transferred graphene produce comparable third harmonic signals and have almost the same damage thresholds.
View Article and Find Full Text PDFBarrett's esophagus (BE) is a metaplastic disorder where dysplastic and early cancerous changes are invisible to the naked eye and where the practice of blind biopsy is hampered by large sampling errors. Multi-photon microscopy (MPM) has emerged as an alternative solution for fast and label-free diagnostic capability for identifying the histological features with sub-micron accuracy. We developed a compact, inexpensive MPM system by using a handheld mode-locked fiber laser operating at 1560nm to study mucosal biopsies of BE.
View Article and Find Full Text PDF