The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as osteogenic growth peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts.
View Article and Find Full Text PDFOleoyl serine (OS), an endogenous fatty acyl amide (FAA) found in bone, has been shown to have an anti-osteoporotic effect. OS, being an amide, can be hydrolyzed in the body by amidases. Hindering its amide bond by introducing adjacent substituents has been demonstrated as a successful method for prolonging its skeletal activity.
View Article and Find Full Text PDFAmong a multitude of hormonal and metabolic complications, individuals with Prader-Willi syndrome (PWS) exhibit significant bone abnormalities, including decreased BMD, osteoporosis, and subsequent increased fracture risk. Here we show in mice that loss of Magel2, a maternally imprinted gene in the PWS critical region, results in reduced bone mass, density, and strength, corresponding to that observed in humans with PWS, as well as in individuals suffering from Schaaf-Yang syndrome (SYS), a genetic disorder caused by a disruption of the MAGEL2 gene. The low bone mass phenotype in Magel2 mice was attributed to reduced bone formation rate, increased osteoclastogenesis and osteoclast activity, and enhanced trans-differentiation of osteoblasts to adipocytes.
View Article and Find Full Text PDFThe endocannabinoid (eCB) system, including its receptors, ligands, and their metabolizing enzymes, plays an important role in bone physiology. Skeletal cannabinoid type 1 (CB1) receptor signaling transmits retrograde signals that restrain norepinephrine (NE) release, thus transiently stimulating bone formation following an acute challenge, suggesting a feedback circuit between sympathetic nerve terminals and osteoblasts. To assess the effect of chronic in vivo occurrence of this circuit, we characterized the skeletal phenotype of mice with a conditional deletion of the CB1 receptor in adrenergic/noradrenergic cells, including sympathetic nerves.
View Article and Find Full Text PDFThe balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower.
View Article and Find Full Text PDFThe inbred mouse strain C57BL/6 is commonly used for the generation of transgenic mouse and is a well established strain in bone research. Different vendors supply different substrains of C57BL/6J as wild-type animals when genetic drift did not incur any noticeable phenotype. However, we sporadically observed drastic differences in the bone phenotype of "WT" C57BL/6J mice originating from different labs and speculated that these variations are attributable, at least in part, to the variation between C57BL/6J substrains, which is often overlooked.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
May 2016
Background: It has been shown that the brain regulates bone remodelling through sympathetic and parasympathetic nerve fibres. However, it is unclear if signals from the skeleton also influence brain functions and animal behaviours.
Methods: Bone formation was conditionally disrupted by daily injections of aciclovir (10 mg/kg) to transgenic mice expressing a herpes-simplex-virus thymidine kinase under the control of the osteoblast-specific promoter of the Bglap gene.
Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2.
View Article and Find Full Text PDFSkeletal integrity is maintained by the co-ordinated activity of osteoblasts, the bone-forming cells, and osteoclasts, the bone-resorbing cells. In this study, we show that mice overexpressing galectin-8, a secreted mammalian lectin of the galectins family, exhibit accelerated osteoclasts activity and bone turnover, which culminates in reduced bone mass, similar to cases of postmenopausal osteoporosis and cancerous osteolysis. This phenotype can be attributed to a direct action of galectin-8 on primary cultures of osteoblasts that secrete the osteoclastogenic factor RANKL upon binding of galectin-8.
View Article and Find Full Text PDFCannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures.
View Article and Find Full Text PDFIn 1964, the psychoactive ingredient of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS).
View Article and Find Full Text PDFThe endocannabinoid (EC) system regulates bone mass. Because cannabis use during pregnancy results in stature shorter than normal, we examined the role of the EC system in skeletal elongation. We show that CB1 and CB2 cannabinoid receptors are expressed specifically in hypertrophic chondrocytes of the epiphyseal growth cartilage (EGC), which drives vertebrate growth.
View Article and Find Full Text PDFOver the last two decades a large number of N-long-chain acyl amino acids have been identified in the mammalian body. The pharmacological activities of only a few of them have been investigated and some have been found to be of considerable interest. Thus arachidonoyl serine is vasodilatory and neuroprotective, arachidonoyl glycine is antinociceptive, and oleoyl serine rescues bone loss.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2013
Smoking is a major risk factor for osteoporosis and fracture, but the mechanism through which smoke causes bone loss remains unclear. Here, we show that the smoke toxins benzo(a)pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) interact with the aryl hydrocarbon receptor (Ahr) to induce osteoclastic bone resorption through the activation of cytochrome P450 1a/1b (Cyp1) enzymes. BaP and TCDD enhanced osteoclast formation in bone marrow cell cultures and gavage with BaP stimulated bone resorption and osteoclastogenesis in vivo.
View Article and Find Full Text PDFOsteocytes are considered the skeletal mechanosensors. However, because osteocytes, particularly trabecular, are barely accessible to in vivo molecular analyses, very little is known on the signals transmitted by these cells to the extra-trabecular milieu. To investigate so called "osteocytic genes" involved in extracellular signaling, we have used a recently developed model whereby a single caudal mouse vertebra (C5) is subjected to controlled compression loading and further devised a method for the isolation of high quality RNA from trabecular osteocytes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level.
View Article and Find Full Text PDFEstrogen uses two mechanisms to exert its effect on the skeleton: it inhibits bone resorption by osteoclasts and, at higher doses, can stimulate bone formation. Although the antiresorptive action of estrogen arises from the inhibition of the MAPK JNK, the mechanism of its effect on the osteoblast remains unclear. Here, we report that the anabolic action of estrogen in mice occurs, at least in part, through oxytocin (OT) produced by osteoblasts in bone marrow.
View Article and Find Full Text PDFThe age-related reduction in bone mass is disproportionally related to skeletal weakening, suggesting that microarchitectural changes are also important determinants of bone quality. The study of cortical and trabecular microstructure, which for many years was mainly based on two-dimensional histologic and scanning electron microscopy imaging, gained a tremendous momentum in the last decade and a half, due to the introduction of microcomputed tomography (μCT). This technology provides highly accurate qualitative and quantitative analyses based on three-dimensional images at micrometer resolution, which combined with finite elemental analysis predicts the biomechanical implications of microstructural changes.
View Article and Find Full Text PDFThere is increasing evidence demonstrating that fatty acid derivatives play a key regulatory role in a variety of tissues. However, the study of skeletal lipidomics is just emerging and global strategies, such as targeted lipidomics, have not been applied to bone tissue. Such strategies hold great promises as in the case of genomics and proteomics.
View Article and Find Full Text PDFObjective: Osteocalcin is a bone-specific protein secreted by osteoblasts and often used as a bone formation biomarker. Rodent studies have reported a hormonal role of osteocalcin on glucose metabolism, increasing insulin secretion and sensitivity and increasing energy expenditure. However, it is unknown whether osteocalcin fulfils the same function in humans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay.
View Article and Find Full Text PDFCurr Osteoporos Rep
December 2010
An increasing number of studies suggest an association between depression and osteoporosis. In a mouse model, depression induces bone loss, mediated by brain-to-bone sympathetic signaling. Depression and bone antianabolic sympathetic tone are alleviated by increasing central serotonin (5-hydroxytryptamine, 5-HT) levels.
View Article and Find Full Text PDFCB2 is a Gi protein-coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss.
View Article and Find Full Text PDFAlthough it has been repeatedly suggested that low bone mineral density (BMD) is disproportionately prevalent among patients with depressive disorders, so far depression has not been officially acknowledged as a risk factor for osteoporosis. In a recent meta-analysis comparing depressed with nondepressed individuals we report that BMD is lower in depressed than nondepressed subjects. The association between depression and BMD is stronger in women than men, and in premenopausal than postmenopausal women.
View Article and Find Full Text PDF