Publications by authors named "BUTOW R"

Maintenance of an intact mitochondrial genome is essential for oxidative phosphorylation in all eukaryotes. Depletion of mitochondrial genome copy number can have severe pathological consequences due to loss of respiratory capacity. In Saccharomyces cerevisiae, several bifunctional metabolic enzymes have been shown to be required for mitochondrial DNA (mtDNA) maintenance.

View Article and Find Full Text PDF

Mitochondrial DNA is organized as a nucleoprotein complex called the nucleoid. Its major protein components have been identified in different organisms, but it is yet unknown whether nucleoids undergo any form of remodeling. Using an in organello ChIP-on-chip assay, we demonstrate that the DNA-bending protein Abf2 binds to most of the mitochondrial genome with a preference for GC-rich gene sequences.

View Article and Find Full Text PDF

E153 is a respiratory deficient mutant of Saccharomyces cerevisiae with a mutation in the active site of the Sit4p protein phosphatase. Measurements of mitochondrial respiration and cytochromes indicate that the mutation suppresses glucose repression. The escape from catabolite repression is accompanied by a marked reduction of the transcriptional repressor Mig1p.

View Article and Find Full Text PDF

Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is organized in nucleoprotein particles called nucleoids. Each nucleoid, which is considered a heritable unit of mtDNA, might contain several copies of the mitochondrial genome and several different proteins. Some nucleoid-associated proteins, such as the high mobility group (HMG) box family, have well defined functions in mtDNA maintenance and packaging; others, such as Aco1 and IIv5, are bifunctional, fulfilling their roles in nucleoids in addition to well established metabolic functions.

View Article and Find Full Text PDF

Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) encodes essential components of the cellular energy-producing apparatus, and lesions in mtDNA and mitochondrial dysfunction contribute to numerous human diseases. Understanding mtDNA organization and inheritance is therefore an important goal. Recent studies have revealed that mitochondria use diverse metabolic enzymes to organize and protect mtDNA, drive the segregation of the organellar genome, and couple the inheritance of mtDNA with cellular metabolism.

View Article and Find Full Text PDF

Retrograde (RTG) signaling senses mitochondrial dysfunction and initiates readjustments of carbohydrate and nitrogen metabolism through nuclear accumulation of the heterodimeric transcription factors, Rtg1/3p. The RTG pathway is also linked to target of rapamycin (TOR) signaling, among whose activities is transcriptional control of nitrogen catabolite repression (NCR)-sensitive genes. To investigate the connections between these two signaling pathways, we have analyzed rapamycin sensitivity of the expression of the RTG target gene CIT2 and of two NCR-sensitive genes, GLN1 and DAL5, in respiratory-competent (rho+) and -incompetent (rho0) yeast cells.

View Article and Find Full Text PDF

Yeast cells respond to mitochondrial dysfunction by altering the expression of a subset of nuclear genes, a process known as retrograde signaling (RS). RS terminates with two transcription factors, Rtg1p and Rtg3p. One positive regulator, Rtg2p, and four negative regulators, Lst8p, Mks1p, and the redundant 14-3-3 proteins, Bmh1p and Bmh2p, control RS upstream of Rtg1/3p.

View Article and Find Full Text PDF

Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix-loop-helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is essential for cells to maintain respiratory competency and is inherited as a protein-DNA complex called the nucleoid. We have identified 22 mtDNA-associated proteins in yeast, among which is mitochondrial aconitase (Aco1p). We show that this Krebs-cycle enzyme is essential for mtDNA maintenance independent of its catalytic activity.

View Article and Find Full Text PDF

In yeast the P-type Ca(2+)-ATPase of the Golgi apparatus, Pmr1p, is the most important player in calcium homeostasis. In Kluyveromyces lactis KlPMR1 inactivation leads to pleiotropic phenotypes, including reduced N-glycosylation and altered cell wall morphogenesis. To study the physiology of K.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus that influences many cellular and organismal activities under both normal and pathophysiological conditions. In yeast it is used as a sensor of mitochondrial dysfunction that initiates readjustments of carbohydrate and nitrogen metabolism. In both yeast and animal cells, retrograde signaling is linked to TOR signaling, but the precise connections are unclear.

View Article and Find Full Text PDF

The yeast mitochondrial chaperonin Hsp60 has previously been implicated in mitochondrial DNA (mtDNA) transactions: it is found in mtDNA nucleoids associated with single-stranded DNA; it binds preferentially to the template strand of active mtDNA ori sequences in vitro; and wild-type (rho+) mtDNA is unstable in hsp60 temperature-sensitive (ts) mutants grown at the permissive temperature. Here we show that the mtDNA instability is caused by a defect in mtDNA transmission to daughter cells. Using high resolution, fluorescence deconvolution microscopy, we observe a striking alteration in the morphology of mtDNA nucleoids in rho+ cells of an hsp60-ts mutant that suggests a defect in nucleoid division.

View Article and Find Full Text PDF

Activation of retrograde signaling (RS) by mitochondrial dysfunction or by inhibition of TOR kinases in yeast results in nuclear accumulation of the transcription factors, Rtg1p and Rtg3p. This process requires Rtg2p, a novel cytoplasmic protein with an N-terminal ATP binding domain. We show that Rtg2p controls RS by reversibly binding a negative regulator, Mks1p.

View Article and Find Full Text PDF

Respiratory deficient yeast cells such as rhoo petites activate an inter-organelle signaling pathway called retrograde regulation. This results in changes in the expression of a subset of nuclear genes leading to major reconfigurations of metabolism that enable cells to adapt to the respiratory deficient state. Previous studies have focused on the role of three positive regulatory factors in the retrograde pathway, Rtg1p, Rtg2p, and Rtg3p, which are essential for both basal and elevated expressions of some, but not all, retrograde responsive genes.

View Article and Find Full Text PDF

To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction.

View Article and Find Full Text PDF

Ilv5p is a bifunctional mitochondrial protein in Saccharomyces cerevisiae required for branched-chain amino acid biosynthesis and for the stability of wild-type (rho(+)) mitochondrial DNA (mtDNA). Mutant forms of Ilv5p defective in mtDNA stability (a(+)D(-)) are present as 5-10 punctate structures in mitochondria, whereas mutants lacking enzymatic function (a(-)D(+)) show a reticular distribution, as does wild-type Ilv5p. a(+)D(-) ilv5 mutations are recessive, and the mutant protein is redistributed to a reticular form when co-expressed with wild-type Ilv5p.

View Article and Find Full Text PDF

Ilv5p is a bifunctional yeast mitochondrial enzyme required for branched chain amino acid biosynthesis and for the stability of mitochondrial DNA (mtDNA) and its parsing into nucleoids. The latter occurs when the general amino acid control (GAC) pathway is activated. We have isolated ilv5 mutants that lack either the enzymatic (a(-)D(+)) or the mtDNA stability function (a(+)D(-)) of the protein.

View Article and Find Full Text PDF

An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1 is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1 Delta cells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate.

View Article and Find Full Text PDF

In cells with reduced mitochondrial function, RTG1, 2 and 3 are required for expression of genes involved in glutamate synthesis. Glutamate negatively regulates RTG-dependent gene expression upstream of Rtg2p, which, in turn, acts upstream of the bHLH/Zip transcription factors, Rtg1p and Rtg3p. Here we report that some mutations [lst8-(2-5)] in LST8, an essential gene encoding a seven WD40-repeat protein required for targeting of amino acid permeases (AAPs) to the plasma membrane, bypass the requirement for Rtg2p and abolish glutamate repression of RTG-dependent gene expression.

View Article and Find Full Text PDF