Publications by authors named "BS Meyer"

We provide an overview of the isotopic signatures of presolar supernova grains, specifically focusing on Ti-containing grains with robustly inferred supernova origins and their implications for nucleosynthesis and mixing mechanisms in supernovae. Recent technique advancements have enabled the differentiation between radiogenic (from Ti decay) and nonradiogenic Ca excesses in presolar grains, made possible by enhanced spatial resolution of Ca-Ti isotope analyses with the Cameca NanoSIMS (Nano-scale Secondary Ion Mass Spectrometer) instrument. Within the context of presolar supernova grain data, we discuss () the production of Ti in supernovae and the impact of interstellar medium heterogeneities on the galactic chemical evolution of Ca/Ca, () the nucleosynthesis processes of neutron bursts and explosive H-burning in Type II supernovae, and () challenges in identifying the progenitor supernovae for Cr-rich presolar nanospinel grains.

View Article and Find Full Text PDF

DNA methylation (DNAm) is a mechanism for rapid acclimation to environmental conditions. In natural systems, small effect sizes relative to noise necessitates large sampling efforts to detect differences. Large numbers of individually sequenced libraries are costly.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents detailed genomes of six ape species, achieving high accuracy and complete sequencing of all their chromosomes.
  • It addresses complex genomic regions, leading to enhanced understanding of evolutionary relationships among these species.
  • The findings will serve as a crucial resource for future research on human evolution and our closest ape relatives.
View Article and Find Full Text PDF

Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection.

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment.

View Article and Find Full Text PDF

An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the primary malignancy of hepatocytes and the second most common cause of cancer-related mortality across the globe. Despite significant advancements in screening, diagnosis, and treatment modalities for HCC, the mortality-to-incidence ratio remain unacceptably high. A recent study indicates that a minor population of HCCs are AFP negative or express the normal range of AFP levels.

View Article and Find Full Text PDF

Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues.

View Article and Find Full Text PDF

With the advent of high-throughput genome sequencing, bioinformatics training has become essential for research in evolutionary biology and related fields. However, individual research groups are often not in the position to teach students about the most up-to-date methodology in the field. To fill this gap, extended bioinformatics courses have been developed by various institutions and provide intense training over the course of two or more weeks.

View Article and Find Full Text PDF

NLRP3 inflammasome and IFN-stimulated gene (ISG) induction are key biological drivers of ineffective hematopoiesis and inflammation in myelodysplastic syndromes (MDSs). Gene mutations involving mRNA splicing and epigenetic regulatory pathways induce inflammasome activation and myeloid lineage skewing in MDSs through undefined mechanisms. Using immortalized murine hematopoietic stem and progenitor cells harboring these somatic gene mutations and primary MDS BM specimens, we showed accumulation of unresolved R-loops and micronuclei with concurrent activation of the cytosolic sensor cyclic GMP-AMP synthase.

View Article and Find Full Text PDF

Unlabelled: To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration.

View Article and Find Full Text PDF

Populations are under strong selection to match reproductive timing with favourable environmental conditions. This becomes particularly important and challenging with increasing interannual environmental variability. Adjusting reproductive timing requires the ability to sense and interpret relevant environmental cues, while responding flexibly to their interannual variation.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell malignancies that can phenotypically resemble other hematologic disorders. Thus, tools that may add to current diagnostic practices could aid in disease discrimination. Constitutive innate immune activation is a pathogenetic driver of ineffective hematopoiesis in MDS through Nod-like receptor protein 3 (NLRP3)-inflammasome-induced pyroptotic cell death.

View Article and Find Full Text PDF

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies.

View Article and Find Full Text PDF

Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections.

View Article and Find Full Text PDF

Epigenetic inheritance has been proposed to contribute to adaptation and acclimation via two information channels: (i) inducible epigenetic marks that enable transgenerational plasticity and (ii) noninducible epigenetic marks resulting from random epimutations shaped by selection. We studied both postulated channels by sequencing methylomes and genomes of Baltic three-spined sticklebacks () along a salinity cline. Wild populations differing in salinity tolerance revealed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes.

View Article and Find Full Text PDF

Differences in habitat and diet between species are often associated with morphological differences. Habitat and trophic adaptation have therefore been proposed as important drivers of speciation and adaptive radiation. Importantly, habitat and diet shifts likely impose changes in exposure to different parasites and infection risk.

View Article and Find Full Text PDF

In marine climate change research, salinity shifts have been widely overlooked. While widespread desalination effects are expected in higher latitudes, salinity is predicted to increase closer to the equator. We took advantage of the steep salinity gradient of the Baltic Sea as a space-for-time design to address effects of salinity change on populations.

View Article and Find Full Text PDF

The ^{36}Ar(n,γ)^{37}Ar (t_{1/2}=35  d) and ^{38}Ar(n,γ)^{39}Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT∼47  keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the ^{37}Ar/^{36}Ar and ^{39}Ar/^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The ^{37}Ar activity was also measured by low-level counting at the University of Bern.

View Article and Find Full Text PDF

Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation.

View Article and Find Full Text PDF

The species flocks of cichlid fishes in the East African Great Lakes are the largest vertebrate adaptive radiations in the world and illustrious textbook examples of convergent evolution between independent species assemblages. Although recent studies suggest some degrees of genetic exchange between riverine taxa and the lake faunas, not a single cichlid species is known from Lakes Tanganyika, Malawi and Victoria that is derived from the radiation associated with another of these lakes. Here, we report the discovery of a haplochromine cichlid species in Lake Tanganyika, which belongs genetically to the species flock of haplochromines of the Lake Victoria region.

View Article and Find Full Text PDF

The species-flocks of cichlid fishes in the East African Great Lakes Victoria, Malawi and Tanganyika constitute the most diverse extant adaptive radiations in vertebrates. Lake Tanganyika, the oldest of the lakes, harbors the morphologically and genetically most diverse assemblage of cichlids and contains the highest number of endemic cichlid genera of all African lakes. Based on morphological grounds, the Tanganyikan cichlid species have been grouped into 12-16 distinct lineages, so-called tribes.

View Article and Find Full Text PDF

The origin of novel phenotypic characters is a key component in organismal diversification; yet, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we examine the origin of egg-spots, an evolutionary innovation of the most species-rich group of cichlids, the haplochromines, where these conspicuous male fin colour markings are involved in mating. Applying a combination of RNAseq, comparative genomics and functional experiments, we identify two novel pigmentation genes, fhl2a and fhl2b, and show that especially the more rapidly evolving b-paralog is associated with egg-spot formation.

View Article and Find Full Text PDF

Matrix metalloprotease 11 (MMP-11), a protease associated with invasion and aggressiveness of cancerous tissue, was postulated as a prognostic marker for pancreatic, breast, and colon cancer patients. Expression analysis, however, did not reveal localization and regulation of this protease. Thus, cellular tools for the visualization of MMP-11 are highly desirable to monitor presence and activity and to elucidate the functional role of MMP-11.

View Article and Find Full Text PDF

The cichlid fishes in the East African Great Lakes are a prime model system for the study of adaptive radiation. Therefore, the availability of an elaborate phylogenetic framework is an important prerequisite. Previous phylogenetic hypotheses on East African cichlids are mainly based on mitochondrial and/or fragment-based markers, and, to date, no taxon-rich phylogeny exists that is based on multilocus DNA sequence data.

View Article and Find Full Text PDF