Publications by authors named "BRIZARD J"

Cattle trypanosomosis caused by is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains.

View Article and Find Full Text PDF

Background: Insect resistance in crops represents a main challenge for agriculture. Transgenic approaches based on proteins displaying insect resistance properties are widely used as efficient breeding strategies. To extend the spectrum of targeted pathogens and overtake the development of resistance, molecular evolution strategies have been used on genes encoding these proteins to generate thousands of variants with new or improved functions.

View Article and Find Full Text PDF

Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T.

View Article and Find Full Text PDF

In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed.

View Article and Find Full Text PDF

We have analyzed the comportment in in vitro culture of 2 different genotypes of Trypanosoma cruzi, the agent of Chagas disease, pertaining to 2 major genetic subdivisions (near-clades) of this parasite. One of the stocks was a fast-growing one, highly virulent in mice, while the other one was slow-growing, mildly virulent in mice. The working hypothesis was that mixtures of genotypes interact, a pattern that has been observed by us in empirical experimental studies.

View Article and Find Full Text PDF

Unlabelled: Pathogenicity of the rice pathogenic bacterium Xanthomonas oryzae pv. oryzae depends on a Hrp (hypersensitive response and pathogenicity) type III secretion system; the expression of which is induced in planta. Expression of the hrp operons is under transcriptional control of two key regulatory proteins, HrpG and HrpX.

View Article and Find Full Text PDF

Viral suppressors of RNA interference (VSRs) target host gene silencing pathways, thereby operating important roles in the viral cycle and in host cells, in which they counteract host innate immune responses. However, the molecular mechanisms of VSRs are poorly understood. We provide here biochemical and biophysical features of the dual suppressor/activator VSR P1 protein encoded by the rice yellow mottle virus.

View Article and Find Full Text PDF

Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae.

View Article and Find Full Text PDF

We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi-subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry.

View Article and Find Full Text PDF

The leucine-rich repeat class of receptor-like kinase (LRR-RLKs) encoding genes represents the largest family of putative receptor genes in the Arabidopsis thaliana genome. However, very little is known about the range of biological process that they control. We present in this paper the functional characterization of RLK7 that has all the structural features of a receptor-like kinase of the plant-specific LRR type.

View Article and Find Full Text PDF

Mosquito-transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar-fed and blood-fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar- or blood-based diet.

View Article and Find Full Text PDF

Background/aims: The aim of this study was to identify human liver proteins that are associated with different stages of liver development.

Methods: We collected liver samples from 14 fetuses between 14 and 41 weeks of development, one child and four adults. Proteins which exhibited consistent and significant variations during development by two-dimensional differential in gel electrophoresis (2D-DIGE) were subjected to peptide mass fingerprint analysis by MALDI-TOF mass spectrometry.

View Article and Find Full Text PDF

Animal trypanosomosis is a major constraint to livestock productivity in the tropics and has a significant impact on the life of millions of people globally (mainly in Africa, South America and south-east Asia). In Africa, the disease in livestock is caused mainly by Trypanosoma congolense, Trypanosoma vivax, Trypanosoma evansi and Trypanosoma brucei brucei. The extracellular position of trypanosomes in the bloodstream of their host requires consideration of both the parasite and its naturally excreted-secreted factors (secretome) in the course of pathophysiological processes.

View Article and Find Full Text PDF

Animal trypanosomosis is one of the most severe constraints to agricultural development in sub-Saharan Africa and is also an important disease of livestock in Latin America and Asia. The causative agents are various species of protozoan parasites belonging to the genus Trypanosoma, among which T. congolense and T.

View Article and Find Full Text PDF

Many scientists working on pathogens (viruses, bacteria, fungi, parasites) are betting heavily on data generated by longitudinal genomic-transcriptomic-proteomic studies to explain biochemical host-vector-pathogen interactions and thus to contribute to disease control. Availability of genome sequences of various organisms, from viruses to complex metazoans, led to the discovery of the functions of the genes themselves. The postgenomic era stimulated the development of proteomic and bioinformatics tools to identify the locations, functions, and interactions of the gene products in tissues and/or cells of living organisms.

View Article and Find Full Text PDF

Leishmania infantum belongs to the Kinetoplastidae that is characterized by a specific mitochondrial DNA, the kinetoplast. This parasite is responsible for both benign cutaneous leishmaniasis and severe visceral leishmaniasis in humans. Molecular determinants of such differences in pathogenesis are not well understood, and the parasites as well as their hosts may contribute to the disease phenotype.

View Article and Find Full Text PDF

Despite increasing evidence of behavioural manipulation of their vectors by pathogens, the underlying mechanisms causing infected vectors to act in ways that benefit pathogen transmission remain enigmatic in most cases. Here, 2-D DIGE coupled with MS were employed to analyse and compare the head proteome of mosquitoes (Anopheles gambiae sensu stricto (Giles)) infected with the malarial parasite (Plasmodium berghei) with that of uninfected mosquitoes. This approach detected altered levels of 12 protein spots in the head of mosquitoes infected with sporozoites.

View Article and Find Full Text PDF

Known host-parasite molecular interactions are widespread among parasite families, but these interactions have to be particularly large considering that viruses generally encode few proteins. Although some particular virus-host interactions are well described, no global study has yet shown multiple and simultaneous interactions in a host-parasite biological system. To prove that these multiple interactions occur in biological conditions, the complexes formed by a plant virus (rice yellow mottle virus) and the proteins of its natural host (rice) were extracted and purified from infected tissue sample.

View Article and Find Full Text PDF

The elucidation of the entire genomic sequence of various organisms, from viruses to complex metazoans, most recently man, is undoubtedly the greatest triumph of molecular biology since the discovery of the DNA double helix. Over the past two decades, the focus of molecular biology has gradually moved from genomes to proteomes, the intention being to discover the functions of the genes themselves. The postgenomic era stimulated the development of new techniques (e.

View Article and Find Full Text PDF

In classical proteomic studies, the searches in protein databases lead mostly to the identification of protein functions by homology due to the non-exhaustiveness of the protein databases. The quality of the identification depends on the studied organism, its complexity and its representation in the protein databases. Nevertheless, this basic function identification is insufficient for certain applications namely for the development of RNA-based gene-silencing strategies, commonly termed RNA interference (RNAi) in animals and post-transcriptional gene silencing (PTGS) in plants, that require an unambiguous identification of the targeted gene sequence.

View Article and Find Full Text PDF

We have used two-dimensional gel electrophoresis with mass spectrometry analysis to study the temporal patterns of protein expression during RYMV (Rice yellow mottle virus) infection in rice cells of two cultivars: IR64, Oryza sativa indica, susceptible, and Azucena, O. sativa japonica, partially resistant to RYMV. Proteomic analysis of nonstressed and RYMV inoculated cells showed statistically significant changes in the relative levels of 40 IR64 proteins and 24 Azucena proteins.

View Article and Find Full Text PDF

We investigated the potential of an improved Agrobacterium tumefaciens-mediated transformation procedure of japonica rice ( Oryza sativa L.) for generating large numbers of T-DNA plants that are required for functional analysis of this model genome. Using a T-DNA construct bearing the hygromycin resistance ( hpt), green fluorescent protein ( gfp) and beta-glucuronidase ( gusA) genes, each individually driven by a CaMV 35S promoter, we established a highly efficient seed-embryo callus transformation procedure that results both in a high frequency (75-95%) of co-cultured calli yielding resistant cell lines and the generation of multiple (10 to more than 20) resistant cell lines per co-cultured callus.

View Article and Find Full Text PDF

The ability to control integration, inheritance, and expression of multiple transgenes is a prerequisite for manipulating biosynthetic pathways and complex agronomic characteristics in plants. One hundred and twenty-five independent transgenic rice plants were regenerated after cobombarding embryogenic tissues with a mixture of 14 different pUC-based plasmids. Eighty-five percent of the R0 plants contained more than two, and 17% more than nine, of the target genes.

View Article and Find Full Text PDF