Publications by authors named "BREUER H"

Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g.

View Article and Find Full Text PDF

The study of microtubule (MT) dynamics is essential for the understanding of cellular transport, cell polarity, axon formation, and other neurodevelopmental mechanisms. All these processes rely on the constant transition between assembly and disassembly of tubulin polymers to/from MTs, known as dynamic instability. This process is well-regulated, among others, by phosphorylation of microtubule-associated proteins (MAP), including the Tau protein.

View Article and Find Full Text PDF

Carboxylic acid reductase enzymes (CARs) are well known for the reduction of a wide range of carboxylic acids to the respective aldehydes. One of the essential CAR domains - the reductase domain (R-domain) - was recently shown to catalyze the standalone reduction of carbonyls, including aldehydes, which are typically considered to be the final product of carboxylic acid reduction by CAR. We discovered that the respective full-length CARs were equally able to reduce aldehydes.

View Article and Find Full Text PDF

Remote sensing data are abundant, whereas surface verification of atmospheric conditions is rare on Mars. Earth-based analogs could help gain an understanding of soil and atmospheric processes on Mars and refine existing models. In this work, we evaluate the applicability of the Weather Research and Forecasting (WRF) model against measurements from the Mars analog High Andes-Atacama Desert.

View Article and Find Full Text PDF

Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this Letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive ω electroproduction off the proton, ep→e^{'}pω, at central Q^{2} values of 1.60, 2.

View Article and Find Full Text PDF

Stunning progress in the experimental resolution and control of natural or man-made complex systems at the level of their quantum mechanical constituents raises the question, across diverse subdisciplines of physics, chemistry, and biology, whether the fundamental quantum nature may condition the dynamical and functional system properties on mesoscopic if not macroscopic scales. However, which are the distinctive signatures of quantum properties in complex systems, notably when modulated by environmental stochasticity and dynamical instabilities? It appears that, to settle this question across the above communities, a shared understanding is needed of the central feature of quantum mechanics: wave-particle duality. In this Perspective, we elaborate how randomness induced by this very quantum property can be discerned from the stochasticity ubiquitous in complex systems already on the classical level.

View Article and Find Full Text PDF

Increased permeability of the blood-brain barrier (BBB) following cerebral injury results in regional extravasation of plasma proteins and can critically contribute to the pathogenesis of epilepsy. Here, we comprehensively explore the spatiotemporal evolution of a main extravasation component, albumin, and illuminate associated responses of the neurovascular unit (NVU) contributing to early epileptogenic neuropathology. We applied translational MR imaging and complementary immunohistochemical analyses in the widely used rat pilocarpine post-status epilepticus (SE) model.

View Article and Find Full Text PDF

The detailed characterization of non-trivial coherence properties of composite quantum systems of increasing size is an indispensable prerequisite for scalable quantum computation, as well as for understanding non-equilibrium many-body physics. Here, we show how autocorrelation functions in an interacting system of phonons as well as the quantum discord between distinct degrees of freedoms can be extracted from a small controllable part of the system. As a benchmark, we show this in chains of up to 42 trapped ions, by tracing a single phonon excitation through interferometric measurements of only a single ion in the chain.

View Article and Find Full Text PDF

We modify the path integral representation of exciton transport in open quantum systems such that an exact description of the quantum fluctuations around the classical evolution of the system is possible. As a consequence, the time evolution of the system observables is obtained by calculating the average of a stochastic difference equation which is weighted with a product of pseudoprobability density functions. From the exact equation of motion one can clearly identify the terms that are also present if we apply the truncated Wigner approximation.

View Article and Find Full Text PDF

Insult-associated blood-brain barrier leakage is strongly suggested to be a key step during epileptogenesis. In this study, we used three non-invasive translational imaging modalities, i.e.

View Article and Find Full Text PDF

The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the β decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum using two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14 to 782 keV.

View Article and Find Full Text PDF

We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds.

View Article and Find Full Text PDF

A 64-year-old woman presented with a history of recurrent hypoglycemia. A prolonged fasting test revealed an increased "amended" insulin-glucose ratio. Transabdominal ultrasound (US), computed tomography (CT) scan, and magnetic resonance imaging (MRI) did not show abnormal results.

View Article and Find Full Text PDF

The modeling and analysis of the dynamics of complex systems often requires to employ non-Markovian stochastic processes. While there is a clear and well-established mathematical definition for non-Markovianity in the case of classical systems, the extension to the quantum regime recently caused a vivid debate, leading to many different proposals for the characterization and quantification of memory effects in the dynamics of open quantum systems. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment, which reveals the locality and universality of non-Markovianity in the quantum state space and substantially simplifies its numerical and experimental determination.

View Article and Find Full Text PDF

The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks.

View Article and Find Full Text PDF

One of the most striking consequences of quantum physics is quantum teleportation - the possibility to transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a maximally entangled quantum state acting as a resource for the teleportation task.

View Article and Find Full Text PDF

We obtain exact analytic expressions for a class of functions expressed as integrals over the Haar measure of the unitary group in d dimensions. Based on these general mathematical results, we investigate generic dynamical properties of complex open quantum systems, employing arguments from ensemble theory. We further generalize these results to arbitrary eigenvalue distributions, allowing a detailed comparison of typical regular and chaotic systems with the help of concepts from random matrix theory.

View Article and Find Full Text PDF

The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.

View Article and Find Full Text PDF

Background: We have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects.

Methods: RNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated.

View Article and Find Full Text PDF

We explore the possibility to generate nonlocal dynamical maps of an open quantum system through local system-environment interactions. Employing a generic decoherence process induced by a local interaction Hamiltonian, we show that initial correlations in a composite environment can lead to nonlocal open system dynamics which exhibit strong memory effects, although the local dynamics is Markovian. In a model of two entangled photons interacting with two dephasing environments, we find a direct connection between the degree of memory effects and the amount of correlation in the initial environmental state.

View Article and Find Full Text PDF

Background And Aim: Hypoglycemic episodes are negative sequelae of inadequate treatment of diabetes. Many of them lead to hospitalization.

Methods: Between 8/2003 und 9/2007 110 consecutive patients who had been admitted because of hypoglycemia to a tertiary hospital were analyzed.

View Article and Find Full Text PDF

The parity-violating (PV) asymmetry of inclusive π- production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Δ0 resonance.

View Article and Find Full Text PDF

We develop a general strategy for the detection of nonclassical system-environment correlations in the initial states of an open quantum system. The method employs a dephasing map which operates locally on the open system and leads to an experimentally accessible witness for genuine quantum correlations, measuring the Hilbert-Schmidt distance between pairs of open system states. We further derive the expectation value of the witness for various random matrix ensembles modeling generic features of complex quantum systems.

View Article and Find Full Text PDF