Publications by authors named "BRESSON A"

Accurate and stable measurement of inertial quantities is essential in geophysics, geodesy, fundamental physics, and inertial navigation. Here, we present an architecture for a compact cold-atom accelerometer-gyroscope based on a magnetically launched atom interferometer. Characterizing the launching technique, we demonstrate 700-parts per million gyroscope scale factor stability over 1 day, while acceleration and rotation rate bias stabilities of 7 × 10 meters per second squared and 4 × 10 radians per second are reached after 2 days of integration of the cold-atom sensor.

View Article and Find Full Text PDF

We present a multi-focus fs/ps-CARS scheme to perform spectroscopy on multiple points simultaneously for gas phase measurements and microscopy, using a single birefringence crystal or a combination of birefringent stacks. CARS performances are first reported for 1 kHz single-shot N spectroscopy on two points set few millimeters apart, allowing thermometry measurements to be carried out in the vicinity of a flame. Then, simultaneous acquisition of toluene spectra is demonstrated on two points set 14 µm apart in a microscope setup.

View Article and Find Full Text PDF

Founded in 1919, the Society of Biology of Strasbourg (SBS) is a learned society whose purpose is the dissemination and promotion of scientific knowledge in biology. Subsidiary of the Society of Biology, the SBS celebrated its Centenary on Wednesday, the 16th of October 2019 on the Strasbourg University campus and at the Strasbourg City Hall. This day allowed retracing the various milestones of the SBS, through its main strengths, its difficulties and its permanent goal to meet scientific and societal challenges.

View Article and Find Full Text PDF

Single shot hybrid fs/ps-CARS spectroscopy of N is demonstrated at repetition rate up to 5 kHz using an amplified probe delivering a constant energy per pulse between 1 and 5 kHz. We performed 5 kHz CARS thermometry in a laminar CH/air flame and in ambient air, with a precision under 0.5% at typical flame temperature, which is 2 times more precise and 5 times faster than previous state of the art with this technique.

View Article and Find Full Text PDF

A novel laser system for ro-vibrational spectroscopy using coherent anti-Stokes Raman Scattering in hybrid fs/ps regime is presented. A single Yb:KGW laser source is used as a master laser to generate the three CARS laser beams, namely the pump and Stokes femtosecond pulses and a 58 ps probe pulse. Master oscillator power amplifier (MOPA) architecture is implemented to increase the probe output power using a custom two stage free space linear amplifier.

View Article and Find Full Text PDF

Laser-induced fluorescence imaging of aluminum atoms (Al-PLIF) is used to analyze the spatio-temporal behavior of aluminized solid propellant combustion. Using alternating LIF and chemiluminescence emission images of the particles in the gaseous and liquid phase evolving close to and far above the dynamically varying propellant surface, sequences of images were recorded and analyzed. The good sensitivity achieved enabled us to track the dynamics of the flame in the vicinity of particles detected all along the flame extension and up to 1.

View Article and Find Full Text PDF

Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts.

View Article and Find Full Text PDF

Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints.

View Article and Find Full Text PDF

We present an innovative multi-line fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing high performance fibered components at these wavelengths, we have demonstrated multi-line operation of an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium.

View Article and Find Full Text PDF

Coherent anti-Stokes Raman scattering (CARS) spectra of N2 in the hybrid femtosecond/picosecond regime have been recorded with 0.7  cm(-1) resolution. The Q-branch rovibrational structure has been resolved, making it suitable for gas-phase simultaneous rotational and vibrational thermometry applications.

View Article and Find Full Text PDF

We demonstrate the first emitter, based on a single optical source device, capable of addressing three species of interest (CO₂, CH₄, and H₂O) for differential absorption Lidar remote sensing of atmospheric greenhouse gases from space in the 2 μm region. It is based on an amplified nested cavity optical parametric oscillator. The single frequency source shows a total conversion efficiency of 37% and covers the 2.

View Article and Find Full Text PDF

We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations.

View Article and Find Full Text PDF

Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight.

View Article and Find Full Text PDF

• R(US) is a major dominant gene controlling quantitative resistance, inherited from Populus trichocarpa, whereas R(1) is a gene governing qualitative resistance, inherited from P. deltoides. • Here, we report a reiterative process of concomitant fine-scale genetic and physical mapping guided by the P.

View Article and Find Full Text PDF

The ADP ribosyl transferase [poly(ADP-ribose) polymerase] ARTD3(PARP3) is a newly characterized member of the ARTD(PARP) family that catalyzes the reaction of ADP ribosylation, a key posttranslational modification of proteins involved in different signaling pathways from DNA damage to energy metabolism and organismal memory. This enzyme shares high structural similarities with the DNA repair enzymes PARP1 and PARP2 and accordingly has been found to catalyse poly(ADP ribose) synthesis. However, relatively little is known about its in vivo cellular properties.

View Article and Find Full Text PDF

Repair of single-stranded DNA breaks before DNA replication is critical in maintaining genomic stability; however, how cells deal with these lesions during S phase is not clear. Using combined approaches of proteomics and in vitro and in vivo protein-protein interaction, we identified the p58 subunit of DNA Pol alpha-primase as a new binding partner of XRCC1, a key protein of the single strand break repair (SSBR) complex. In vitro experiments reveal that the binding of poly(ADP-ribose) to p58 inhibits primase activity by competition with its DNA binding property.

View Article and Find Full Text PDF

In yeast, Rad6-Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases eta or zeta or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities--a ubiquitin ligase that promotes Mms2-Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR.

View Article and Find Full Text PDF

We discuss spectrotemporal measurements of laser diode pulses performed with a streak camera and a grating monochromator to yield a precise evaluation of chirping effects in Q-switched multimode emissions. We experimentally illustrate several causes of errors, depending on the grating size and period as well as on the adjustment of the collimating lens at the monochromator output. An analytical formula is derived that allows us to relate the chirp amplitude to the inclination of the modal structures in the streak image.

View Article and Find Full Text PDF

The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein-protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP-ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts.

View Article and Find Full Text PDF

Replication through (6-4)TT and G-AAF lesions was compared in Saccharomyces cerevisiae strains proficient and deficient for the RAD30-encoded DNA polymerase eta (Pol eta). In the RAD30 strain, the (6-4)TT lesion is replicated both inaccurately and accurately 60 and 40% of the time, respectively. Surprisingly, in a rad30 Delta strain, the level of mutagenic bypass is essentially suppressed, while error-free bypass remains unchanged.

View Article and Find Full Text PDF

The purpose of this paper is to present a pictorial display of osseous and articular lesions of the anterior chest wall. The role of CT and MR imaging in such disorders is emphasized. Imaging of the anterior thoracic wall by plain films is particularly difficult.

View Article and Find Full Text PDF

Three pediatric patients with multiple geodes in the fingers are reported. This condition occurs mainly between one and three years and at seven years of age and is more common in winter. Affected fingers are swollen.

View Article and Find Full Text PDF

Among 500 CT scan of temporomandibular joint (TMJ), examined since 1982 by bilateral direct sagittal method (Department of Radiology, Pr. A. TREHEUX, CHU Nancy-Brabois), the authors have retained 14 cases of patients with symptoms related to TMJ's dysfunction cured by surgery (Department of Maxillo Facial Surgery, Pr STRICKER, CHU Nancy).

View Article and Find Full Text PDF