Hypothesis: Lanthanide Binding Tag (LBT) peptides that coordinate selectively with lanthanide ions can be used to replace the energy intensive processes used for the separation of rare earth elements (REEs). These surface-active biomolecules, once selectively complexed with the trivalent REE cations, can adsorb to air/aqueous interfaces of bubbles for foam-based REEs recovery. Glutaraldehyde, an organic compound that is a homobifunctional crosslinker for proteins and peptides, can be used to enhance the adsorption and interfacial stabilization of lanthanide-bound peptides films.
View Article and Find Full Text PDFThe capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire -dependent reflectivity profile can be obtained at a single, fixed incident angle.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2023
Hypothesis: Introducing charged terminal groups to polymers that graft nanoparticles enable Coulombic control over their assembly by tuning the pH and salinity of their aqueous suspensions.
Experiments: Gold nanoparticles (AuNPs) are grafted with poly (ethylene glycol) (PEG) terminated with (charge-neutral), (negatively charged) or groups (positively charged), and characterized with dynamic light scattering, ζ-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) are used to determine the density profile and in-plane structure of the AuNPs assembly at the aqueous surface.
The surface adsorption of ionic surfactants is fundamental for many widespread phenomena in life sciences and for a wide range of technological applications. However, direct atomic-resolution structural experimental studies of noncrystalline surface-adsorbed films are scarce. Thus, even the most central physical aspects of these films, such as their charge density, remain uncertain.
View Article and Find Full Text PDFControlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs).
View Article and Find Full Text PDFWe have created two-dimensional (2D) binary superlattices by cocrystallizing gold nanoparticles (AuNPs) of two distinct sizes into √3 × √3 and 2 × 2 complex binary superlattices, derived from the hexagonal structures of the single components. The building blocks of these binary systems are AuNPs that are functionalized with different chain lengths of poly(ethylene glycol) (PEG). The assembly of these functionalized NPs at the air-water interface is driven by the presence of salt, causing PEG-AuNPs to migrate to the aqueous surface and assemble into a crystalline lattice.
View Article and Find Full Text PDFWe report on the assembly of gold nanoparticle (AuNPs) superlattices at the liquid/vapor interface and in the bulk of their suspensions. Interparticle distances in the assemblies are achieved on multiple length scales by varying chain lengths of surface grafted AuNPs by polyethylene glycol (PEG) with molecular weights in the range 2000-40,000 Da. Crystal structures and lattice constants in both 2D and 3D assemblies are determined by synchrotron-based surface-sensitive and small-angle X-ray scattering.
View Article and Find Full Text PDFThis Comment raises several questions concerning the surface structure concluded in the paper referenced in the title. Specifically, that paper ignores previous experiments and simulations which demonstrate for the same ionic liquids depth-decaying, multilayered surface-normal density profiles rather than the claimed molecular mono- or bi-layers. We demonstrate that the claimed structure does not reproduce the measured X-ray reflectivity, which probes directly the surface-normal density profile.
View Article and Find Full Text PDFComplex fluids near interfaces or confined within nanoscale volumes can exhibit substantial shifts in physical properties compared to bulk, including glass transition temperature, phase separation, and crystallization. Because studies of these effects typically use thin film samples with one dimension of confinement, it is generally unclear how more extreme spatial confinement may influence these properties. In this work, we used x-ray photon correlation spectroscopy and gold nanoprobes to characterize polyethylene oxide confined by nanostructured gratings (<100nm width) and measured the viscosity in this nanoconfinement regime to be ∼500 times the bulk viscosity.
View Article and Find Full Text PDFThe molecular structures of polyamide barrier layers in reverse osmosis membranes, made by interfacial polymerization of -phenylenediamine and trimesoyl chloride under different reaction and post-treatment conditions, were characterized by grazing incidence wide-angle X-ray scattering (GIWAXS). The molecular backbone packing is consistent with two different aromatic molecular packing motifs (parallel and perpendicular) with preferential surface-induced orientation. The results suggest that the perpendicular, T-shaped, packing motif (5 Å spacing) might be associated with optimal membrane permeance, compared with the parallel packings (3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods.
View Article and Find Full Text PDFRecent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects.
View Article and Find Full Text PDFX-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water.
View Article and Find Full Text PDFLiquid droplets, widely encountered in everyday life, have no flat facets. Here we show that water-dispersed oil droplets can be reversibly temperature-tuned to icosahedral and other faceted shapes, hitherto unreported for liquid droplets. These shape changes are shown to originate in the interplay between interfacial tension and the elasticity of the droplet's 2-nm-thick interfacial monolayer, which crystallizes at some T = Ts above the oil's melting point, with the droplet's bulk remaining liquid.
View Article and Find Full Text PDFThe structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules' long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 Å. However, Bragg rod analysis shows that ∼12 of the CH2 units are not included in the crystalline-like domains.
View Article and Find Full Text PDFX-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources.
View Article and Find Full Text PDFThe structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails.
View Article and Find Full Text PDFThe structure of the Langmuir-Gibbs films of normal alkanes C(n) of length n = 12-21 formed at the surface of aqueous solutions of C(m)TAB surfactants, m = 14, 16, and 18, was studied by surface-specific synchrotron X-ray methods. At high temperatures, a laterally disordered monolayer of mixed alkane molecules and surface-adsorbed surfactant tails is found, having thicknesses well below those of the alkanes' and surfactant tails' extended length. The mixed monolayer undergoes a freezing transition at a temperature T(s)(n,m), which forms, for n ≤ m + 1, a crystalline monolayer of mixed alkane molecules and surfactant tails.
View Article and Find Full Text PDFAlkanes longer than n = 6 carbons do not spread on the water surface, but condense in a macroscopic lens. However, adding trimethylammonium-based surfactants, C(m)TAB, in submillimolar concentrations causes the alkanes to spread and form a single Langmuir-Gibbs (LG) monolayer of mixed alkanes and surfactant tails, which coexists with the alkane lenses. Upon cooling, this LG film surface-freezes at a temperature T(s) above the bulk freezing temperature T(b).
View Article and Find Full Text PDFNanostructured grating surfaces with groove widths less than 200 nm impose boundary conditions that frustrate the natural molecular orientational ordering within thin films of blended polymer semiconductor poly(3-hexlythiophene) and phenyl-C61-butyric acid methyl ester, as revealed by grazing incidence X-ray scattering measurements. Polymer interactions with the grating sidewall strongly inhibit the polymer lamellar alignment parallel to the substrate typically found in planar films, in favor of alignment perpendicular to this orientation, resulting in a preferred equilibrium molecular configuration difficult to achieve by other means. Grating surfaces reduce the relative population of the parallel orientation from 30% to less than 5% in a 400 nm thick film.
View Article and Find Full Text PDFCrystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2013
The molecular-scale structure of the ionic liquid [C18mim](+)[FAP](-) near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data.
View Article and Find Full Text PDFSurface energy has been demonstrated as a means to direct interfacial-layer composition in polymer:fullerene blends utilized as active layers in organic photovoltaic devices. Combined with recent materials advances in the preparation of nanoscale chemical patterns, surface energy control of nanophase separation presents an opportunity to employ patterned surface energy templates to control the 3D blend morphology of polymer:fullerene blends. This report details the directed assembly of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends atop linear grating patterns with domains of alternating high and low surface energy of 50 to 600 nm in width prepared by nanoscale oxidative lithography of alkyl-terminated self-assembled monolayers on SiO2 and SiH surfaces.
View Article and Find Full Text PDF