Background: Alterations in protein composition and oxidative damage of high density lipoprotein (HDL) have been proposed to impair the cardioprotective properties of HDL. We tested whether relative levels of proteins in HDL(2) could be used as biomarkers for coronary artery disease (CAD).
Methods: Twenty control and eighteen CAD subjects matched for HDL-cholesterol, age, and sex were studied.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e.
View Article and Find Full Text PDFFirst, standard mixtures of trimethylsilyl (TMS) derivatives of amino acid and organic acid are analyzed by comprehensive two-dimensional (2D) gas chromatography (GC) coupled to time-of-flight mass spectrometry (GC x GC/TOFMS) in order to illustrate important issues regarding application of the technique. Specifically of interest is the extent to which the peak capacity of the 2D separation space has been utilized and the procedure by which the derivative standards are identified in the 2D separations using the mass spectral information. The resulting 2D separation is found to make extensive use of the GC x GC separation space provided by the complementary stationary phases employed.
View Article and Find Full Text PDFA sequential injection analysis (SIA) system is coupled with dynamic surface tension detection (DSTD) for the purpose of studying the interfacial properties of surface-active samples. DSTD is a novel analyzer based upon a growing drop method, utilizing a pressure sensor measurement of drop pressure. The pressure signal depends on the surface tension properties of sample solution drops that grow and detach at the end of a capillary tip.
View Article and Find Full Text PDFA novel Raman sensor using a liquid-core optical waveguide is reported, implementing a Teflon-AF 2400 tube filled with water. An aqueous analyte mixture of benzene, toluene and p-xylene was introduced using a 1000 microl sample loop to the liquid-core waveguide (LCW) sensor and the analytes were preconcentrated on the inside surface of the waveguide tubing. The analytes were then eluted from the waveguide using an acetonitrile-water solvent mixture injected via a 30 microl eluting solvent loop.
View Article and Find Full Text PDFFirst, a novel calibration method is used to expand the current understanding of spherical drop growth and elongation that occurs during on-line measurements of surface pressure using the dynamic surface tension detector (DSTD). Using a novel surface tension calibration method, the drop radius is calculated as a function of time from experimental drop pressure data and compared to the theoretical drop radius calculated from volumetric flow rate. From this comparison, the drop volume at which the drop shape starts to deviate ( approximately 4 mul) from a spherical shape is readily observed and deviates more significantly by approximately 6 mul drop volume (5% deviation in the ideal spherical drop radius) for the capillary sensing tip employed in the DSTD.
View Article and Find Full Text PDFSimple sequential injection analysis systems with DSTD (SIA/DSTD) have been developed. One was employed for the study of the effects of the ion contents in solutions to the dynamic surface pressure of ionic surfactants. The results from the studies show the possibility for an alternative simple fast screening, but also a sensitive procedure for water quality determination.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC x GC-TOF-MS) is a highly selective technique ideal for the analysis of complex mixtures. The instrument yields an abundance of data, with complete mass spectral scans at every time point in the GC x GC separation space. The development and application of appropriate tools for data mining is essential in making sense of the wealth of information available.
View Article and Find Full Text PDFThe developed algorithm reported herein, referred to as "DotMap," addresses the need to rapidly identify analyte peak locations in gas chromatography x gas chromatography-time of flight mass spectrometry (GC x GC-TOF-MS) data. The third-order structure of GC x GC-TOF-MS data is such that at each point in the GC x GC chromatogram, a complete mass spectrum is measured. DotMap utilizes this third-order structure to search for the location of a given spectrum of interest in a complete data set, or in a user selected portion of the complete data set.
View Article and Find Full Text PDFTwo-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC x GC-TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC x GC-TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture.
View Article and Find Full Text PDFComprehensive, two-dimensional gas chromatography (GC x GC) is used in conjunction with trilinear partial least squares (Tri-PLS) to quantify the percent weight of naphthalenes (two-ring aromatic compounds) in jet fuel samples. The increased peak capacity and selectivity of GC x GC makes the technique attractive for the rapid, and possibly less tedious analysis of jet fuel. The analysis of complex mixtures by GC x GC is further enhanced through the use of chemometric techniques, including those designed for use on 2-D data such as Tri-PLS.
View Article and Find Full Text PDFA novel injection technique for high-speed gas chromatography is demonstrated. Synchronized dual-valve injection is shown to provide peak widths as low as 1.5 ms (width at half-height) for an unretained analyte.
View Article and Find Full Text PDFTwo-dimensional comprehensive gas chromatography (GC x GC) is a powerful instrumental tool in its own right that can be used to analyze complex mixtures, generating selective data that is applicable to multivariate quantitative analysis and pattern recognition. It has been recently demonstrated that by coupling GC x GC to time-of-flight mass spectrometry (TOFMS), a highly selective technique is produced. One separation on a GC x GC/TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture.
View Article and Find Full Text PDFA valve-based comprehensive two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer (GC x GC/TOFMS) is demonstrated. The performance characteristics of the instrument were evaluated using a complex sample containing a mixture of fuel components, natural products, and organo-phosphorous compounds. The valve-based GC x GC, designed to function with an extended temperature of operation range, is shown to have high chromatographic resolution, high separation efficiency and low detection limits.
View Article and Find Full Text PDFA high-temperature configuration for a diaphragm valve-based gas chromatography (GCXGC) instrument is demonstrated. GCxGC is a powerful instrumental tool often used to analyze complex mixtures. Previously, the temperature limitations of valve-based GCxGC instruments were set by the maximum operating temperature of the valve, typically 175 degrees C.
View Article and Find Full Text PDFData from comprehensive two-dimensional (2-D) separation techniques, such as comprehensive 2-D gas chromatography (GC x GC), liquid chromatography/liquid chromatography (LC x LC) and liquid chromatography/ capillary electrophoresis (LC x CE) can be readily analyzed by various chemometric methods to increase chemical analysis capabilities. A retention time alignment, preprocessing method is presented that objectively corrects for run-to-run retention time variations on both separation dimensions of comprehensive 2-D separations prior to application of chemometric data analysis algorithms. The 2-D alignment method corrects for run-to-run shifting of a sample data matrix relative to a standard data matrix on both separation time axes in an independent, stepwise fashion.
View Article and Find Full Text PDFQuantitative analysis of naphtha samples is demonstrated using comprehensive two-dimensional gas chromatography (GC x GC) and chemometrics. This work is aimed at providing a GC system for the quantitative and qualitative analysis of complex process streams for process monitoring and control. The high-speed GC x GC analysis of naphtha is accomplished through short GC columns, high carrier gas velocities, and partial chromatographic peak resolution followed by multivariate quantitative analysis.
View Article and Find Full Text PDFSubstantial improvements in a multidimensional dynamic surface tension detector (DSTD) are presented. Rapid, online calibration and measurement of the dynamic surface tension for high-performance liquid chromatography separations is achieved. Dynamic surface tension is determined by measuring the differential pressure across the liquid-air interface of repeatedly growing and detaching drops.
View Article and Find Full Text PDFA high-speed quantitative analysis of aromatic isomers in a jet fuel sample is performed using comprehensive two-dimensional gas chromatography (GC x GC) and chemometrics. A GC x GC separation time of 2.8 min is achieved for three aromatic isomers in jet fuel, which is 5 times faster than a reference method in which a singlecolumn separation resolves two of the three isomers of interest.
View Article and Find Full Text PDF